DOI QR코드

DOI QR Code

Repeated impact response of bio-inspired sandwich beam with arched and honeycomb bilayer core

  • Ahmad B.H. Kueh (Department of Civil Engineering, Faculty of Engineering, Universiti Malaysia Sarawak) ;
  • Juin-Hwee Tan (Goodhart Land Sdn. Bhd.) ;
  • Shukur Abu Hassan (Centre for Advanced Composite Materials (CACM), School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) ;
  • Mat Uzir Wahit (School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia)
  • 투고 : 2021.12.27
  • 심사 : 2023.02.21
  • 발행 : 2023.03.25

초록

The article examines the impact response of the sandwich beam furnished by a novel bilayer core as inspired by the woodpecker's head architecture under different repeatedly exerted low-velocity impact loadings by employing the finite element package, ABAQUS. The sandwich beam forms four essential parts comprising bottom and top carbon fiber reinforced polymer laminates encasing bilayer core made of laterally arched solid hot melt adhesive material and aluminum honeycomb. Impact loadings are implemented repeatedly with a steel hemisphere impactor for various impact energies, 7.28 J, 9.74 J, and 12.63 J. Essentially, the commonly concentrated stresses at the impact region are regulated away by the arched core in all considered cases thus reducing the threat of failure. The sandwich beam can resist up to 5 continual impacts at 7.28 J and 9.74 J but only up to 3 times repeated loads at 12.63 J before visible failure is noticed. In the examination of several key impact performance indicators under numerous loading cases, the proposed beam demonstrates favorably up to 1.3-11.2 higher impact resistance efficacies compared to existing designs, therefore displaying an improvement in repeated impact resistance of the new design.

키워드

과제정보

The authors thank Universiti Teknologi Malaysia and Universiti Malaysia Sarawak for funding the researchunder the Collaborative Research Grant (CRG) UTM-National initiative (grant number: GL/F02/CRGUTM/02/2020).

참고문헌

  1. ABAQUS (2013), ABAQUS 6.14, Analysis User's Guide: Volume IV: Elements, Provid. Rhode Isl, Dassault Systemes.
  2. Abo Sabah, S.H., Kueh, A.B.H. and Al-Fasih, M.Y. (2017), "Comparative low-velocity impact behavior of bio-inspired and conventional sandwich composite beams", Compos. Sci. Technol., 149, 64-74. https://doi.org/10.1016/j.compscitech.2017.06.014.
  3. Abo Sabah, S.H., Kueh, A.B.H. and Al-Fasih, M.Y. (2018), "Bio-inspired vs. conventional sandwich beams: A low-velocity repeated impact behavior exploration", Constr. Build. Mater., 169, 193-204. https://doi.org/10.1016/j.conbuildmat.2018.02.201.
  4. Abo Sabah, S.H., Kueh, A.B.H. and Bunnori, N.M. (2019), "Failure mode maps of bio-inspired sandwich beams under repeated low-velocity impact", Compos. Sci. Technol., 182, 107785. https://doi.org/10.1016/j.compscitech.2019.107785.
  5. Abrate, S. (1997), "Localized impact on sandwich structures with laminated facings", Appl. Mech. Rev., 50(2), 69-82. https://doi.org/10.1115/1.3101689
  6. Al-Fasih, M.Y., Kueh, A.B.H. and W. Ibrahim, M.H. (2020a), "Failure behavior of sandwich honeycomb composite beam containing crack at the skin", PLoS One, 15(2), e0227895. https://doi.org/10.1371/journal.pone.0227895.
  7. Al-Fasih, M.Y., Kueh, A.B.H. and W. Ibrahim, M.H. (2020b), "Flexural behavior of sandwich beams with novel triaxially woven fabric composite skins", Steel Compos. Struct., 34(2), 299-308. https://doi.org/10.12989/scs.2020.34.2.299.
  8. Al-Fasih, M.Y., Mohamad, M.E., Ibrahim, I.S., Ahmad, Y., Ariffin, M. ., Sarbini, N.N., ... & Kueh, A.B.H. (2021), "Experimental and numerical evaluations of composite concrete-to-concrete interfacial shear strength under horizontal and normal stresses", PLoS One, 16(5), e0252050. https://doi.org/10.1371/journal.pone.0252050.
  9. Al-Fatlawi, A., Jarmai, K. and Kovacs, G. (2021), "Optimal design of a lightweight composite sandwich plate used for airplane containers", Struct. Eng. Mech., 78(5), 611-622. https://doi.org/10.12989/sem.2021.78.5.611.
  10. Asgari, G., Payganeh, G. and Fard, K.M. (2019), "Dynamic instability and free vibration behavior of three-layered soft-cored sandwich beams on nonlinear elastic foundations", Struct. Eng. Mech., 72(4), 525-540. https://doi.org/10.12989/sem.2019.72.4.525.
  11. Bazilevs, Y., Deng, X., Korobenko, A., Lanza di Scalea, F., Todd, M.D. and Taylor, S.G. (2015), "Isogeometric fatigue damage prediction in large-scale composite structures driven by dynamic sensor data", J. Appl. Mech., 82(9), 091008. https://doi.org/10.1115/1.4030795.
  12. Chai, G.B. and Zhu, S. (2011), "A review of low-velocity impact on sandwich structures", Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 225(4), 207-230. https://doi.org/10.1177/1464420711409985.
  13. Chen, J., Zhang, X., Okabe, Y., Saito, K., Guo, Z. and Pan, L. (2017), "The deformation mode and strengthening mechanism of compression in the beetle elytron plate", Mater. Des., 131, 481-486. https://doi.org/10.1016/j.matdes.2017.06.014.
  14. Dai, B., Zhou, G., Sun, J., Chen, M. and Wang, J. (2016), "Experimental study on the mechanical properties of looped fabric reinforced foam core sandwich composite", J. Compos. Mater., 50(20), 2807-2821. https://doi.org/10.1177/0021998315613127.
  15. Haldar, S. and Bruck, H.A. (2014), "Mechanics of composite sandwich structures with bioinspired core", Compos. Sci. Technol., 95, 67-74. https://doi.org/10.1016/j.compscitech.2014.02.011.
  16. Hsu, D.K. (2009), "Nondestructive evaluation of sandwich structures: a review of some inspection techniques", J. Sandw. Struct. Mater., 11(4), 275-291. https://doi.org/10.1177/1099636209105377.
  17. Ibrahim, M.E. (2014), "Nondestructive evaluation of thick-section composites and sandwich structures: A review", Compos. Part A Appl. Sci. Manuf., 64, 36-48. https://doi.org/10.1016/j.compositesa.2014.04.010.
  18. Kam, C.Z. and Kueh, A.B.H. (2013), "Bending response of cross-ply laminated composite plates with diagonally perturbed localized interfacial degeneration", Sci. World J., 2013, Article 350890. https://doi.org/10.1155/2013/350890.
  19. Kam, C.Z., Kueh, A.B.H., Shek, P.N., Tan, C.S. and Md Tahir, M. (2012), "Flexural performance of laminated composite plates with diagonally perturbed localized delamination", Adv. Sci. Lett., 14(1), 455-457. https://doi.org/10.1166/asl.2012.4042.
  20. Kueh, A.B.H. (2012), "Fitting-free hyperelastic strain energy formulation for triaxial weave fabric composites", Mech. Mater., 47, 11-23. https://doi.org/10.1016/j.mechmat.2012.01.001.
  21. Kueh, A.B.H. (2013), "Buckling of sandwich columns reinforced by triaxial weave fabric composite skin-sheets", Int. J. Mech. Sci., 66, 45-54. https://doi.org/10.1016/j.ijmecsci.2012.10.007.
  22. Kueh, A.B.H. (2021), "Artificial neural network and regressed beam-column connection explicit mathematical moment-rotation expressions", J. Build. Eng., 43, 103195. https://doi.org/10.1016/j.jobe.2021.103195.
  23. Kueh, A.B.H., Razali, A.W., Lee, Y.Y., Hamdan, S., Yakub, I. and Suhaili, N. (2023), "Acoustical and mechanical characteristics of mortars with pineapple leaf fiber and silica aerogel infills-measurement and modeling", Mater. Today Commun., 35, 105540. https://doi.org/10.1016/j.mtcomm.2023.105540.
  24. Kueh, A.B.H. and Siaw, Y.Y. (2021), "Impact resistance of bio-inspired sandwich beam with side-arched and honeycomb dual-core", Compos. Struct., 275, 114439. https://doi.org/10.1016/j.compstruct.2021.114439.
  25. Kueh, Ahmad Beng Hong, Tan, C.Y., Yahya, M.Y. and Wahit, M.U. (2022), "Impact resistance efficiency of bio-inspired sandwich beam with different arched core materials", Steel Compos. Struct., 44(1), 105-117. https://doi.org/10.12989/scs.2022.44.1.105.
  26. Langdon, G.S., Cantwell, W.J., Guan, Z.W. and Nurick, G.N. (2014), "The response of polymeric composite structures to air-blast loading: a state-of-the-art", Int. Mater. Rev., 59(3), 159-177. https://doi.org/10.1179/1743280413Y.0000000028.
  27. Lin, Q., Jia, W., Wu, H., Kueh, A.B.H., Wang, Y., Wang, K. and Cai, J. (2021), "Wrapping deployment simulation analysis of leaf-inspired membrane structures", Aerosp., 8, 218. https://doi.org/10.3390/aerospace8080218.
  28. Liu, C., Deng, X., Liu, J., Peng, T., Yang, S. and Zheng, Z. (2020), "Dynamic response of saddle membrane structure under hail impact", Eng. Struct., 214, 110597. https://doi.org/10.1016/j.engstruct.2020.110597.
  29. Liu, C., Xie, H., Deng, X., Liu, J., Wang, M. and Jiang, S. (2021), "Random vibration of composite saddle membrane structure under the impact loading", Compos. Struct., 269, 114020. https://doi.org/10.1016/j.compstruct.2021.114020.
  30. Liu, T., Hou, S., Nguyen, X. and Han, X. (2017), "Energy absorption characteristics of sandwich structures with composite sheets and bio coconut core", Compos. Part B Eng., 114, 328-338. https://doi.org/10.1016/j.compositesb.2017.01.035.
  31. Mokhatar, S.N., Abdullah, R. and Kueh, A.B.H. (2013), "Computational impact responses of reinforced concrete slabs", Comput. Concrete, 12(1), 37-51. https://doi.org/10.12989/cac.2013.12.1.037.
  32. Mokhatar, S.N., Sonoda, Y., Kueh, A.B.H. and Jaini, Z.M. (2015), "Quantitative impact response analysis of reinforced concrete beam using the Smoothed Particle Hydrodynamics (SPH) method", Struct. Eng. Mech., 56(6), 917-938. https://doi.org/10.12989/sem.2015.56.6.917.
  33. Nguyen-Van, V., Wickramasinghe, S., Ghazlan, A., Nguyen-Xuan, H. and Tran, P. (2020), "Uniaxial and biaxial bioinspired interlocking composite panels subjected to dynamic loadings", Thin Wall. Struct., 157, 107023. https://doi.org/10.1016/j.tws.2020.107023.
  34. Noor, A.K., Burton, W.S. and Bert, C.W. (1996), "Computational models for sandwich panels and shells", Appl. Mech. Rev., 49(3), 155-199. https://doi.org/10.1115/1.3101923.
  35. San Ha, N., Lu, G., Shu, D. and Yu, T.X. (2020), "Mechanical properties and energy absorption characteristics of tropical fruit durian (Durio zibethinus)", J. Mech. Behav. Biomed. Mater., 104, 103603. https://doi.org/10.1016/j.jmbbm.2019.103603.
  36. Sayyad, A.S. and Ghugal, Y.M. (2017), "Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature", Compos. Struct., 171, 486-504. https://doi.org/10.1016/j.compstruct.2017.03.053.
  37. Soufeiani, L., Ghadyani, G., Kueh, A.B.H. and Nguyen, K.T.Q. (2017), "The effect of laminate stacking sequence and fiber orientation on the dynamic response of FRP composite slabs", J. Build. Eng., 13, 41-52. https://doi.org/10.1016/j.jobe.2017.07.004.
  38. Sun, Z., Li, D., Zhang, W., Shi, S. and Guo, X. (2017), "Topological optimization of biomimetic sandwich structures with hybrid core and CFRP face sheets", Compos. Sci. Technol., 142, 79-90. https://doi.org/10.1016/j.compscitech.2017.01.029.
  39. Sun, Z., Shi, S., Guo, X., Hu, X. and Chen, H. (2016), "On compressive properties of composite sandwich structures with grid reinforced honeycomb core", Compos. Part B Eng., 94, 245-252. https://doi.org/10.1016/j.compositesb.2016.03.054
  40. Syafiuddin, A., Hadibarata, T., Beng Hong Kueh, A. and Razman Salim, M. (2018), "Novel weed-extracted silver nanoparticles and their antibacterial appraisal against a rare bacterium from river and sewage treatment plan", Nanomater., 8(1), 1-9. https://doi.org/10.3390/nano8010009.
  41. Talebi, E., Md Tahir, M., Zahmatkesh, F. and Kueh, A.B.H. (2014), "Comparative study on the behaviour of buckling restrained braced frames at fire", J. Constr. Steel Res., 102, 1-12. https://doi.org/10.1016/j.jcsr.2014.06.003.
  42. Talebi, E., Tahir, M.M., Zahmatkesh, F. and Kueh, A.B.H. (2015), "A numerical analysis on the performance of buckling restrained braces at fire-study of the gap filler effect", Steel Compos. Struct., 19(3), 661-678. https://doi.org/10.12989/scs.2015.19.3.661.
  43. Tang, Y.X., Lee, Y.H., Amran, M., Fediuk, R., Vatin, N., Kueh, A.B.H. and Lee, Y.Y. (2022), "Artificial neural network-forecasted compression strength of alkaline-activated slag concretes", Sustain., 14(9), 5214. https://doi.org/10.3390/su14095214.
  44. Taskin, V. and Demirhan, P.A. (2021), "Static analysis of simply supported porous sandwich plates", Struct. Eng. Mech., 77(4), 549-557. https://doi.org/10.12989/sem.2021.77.4.549.
  45. Wu, Y., Liu, Q., Fu, J., Li, Q. and Hui, D. (2017), "Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels", Compos. Part B Eng., 121, 122-133. https://doi.org/10.1016/j.compositesb.2017.03.030.
  46. Yakub, I., Kueh, A.B.H., Pineda De La O, E.A., Rahman, M.R., Barawi, M.H., Abdullah, M.O., ... & Vatin, N.I. (2022), "Employing an artificial neural network in correlating a hydrogen-selective catalytic reduction performance with crystallite sizes of a biomass-derived bimetallic catalyst", Catal., 12(7), 779. https://doi.org/10.3390/catal12070779.
  47. Yang, X., Ma, J., Shi, Y., Sun, Y. and Yang, J. (2017), "Crashworthiness investigation of the bio-inspired bidirectionally corrugated core sandwich panel under quasi-static crushing load", Mater. Des., 135, 275-290. https://doi.org/10.1016/j.matdes.2017.09.040.
  48. Zahmatkesh, F., Osman, M.H., Talebi, E. and Kueh, A.B.H. (2014), "Analytical study of slant end-plate connection subjected to elevated temperatures", Steel Compos. Struct., 17(1), 47-67. https://doi.org/10.12989/scs.2014.17.1.047.
  49. Zhang, X., Xie, J., Chen, J., Okabe, Y., Pan, L. and Xu, M. (2017), "The beetle elytron plate: a lightweight, high-strength and buffering functional-structural bionic material", Scientif. Report., 7(1), 1-7. https://doi.org/10.1038/s41598-017-03767-w.