DOI QR코드

DOI QR Code

Examining the qualification of copper magnetic nanocatalyst design and its application in piezoelectric sensor

  • Yufeng Pang (School of Electrical Engineering, Changzhou Vocational Institute of Mechatronic Technology) ;
  • Xiaojuan Li (School of Electrical Engineering, Changzhou Vocational Institute of Mechatronic Technology)
  • Received : 2022.02.20
  • Accepted : 2023.02.20
  • Published : 2023.03.25

Abstract

Piezoelectricity is defined as the ability of certain materials to produce electric signals when mechanically stressed or to deform when an electrical potential is applied. Piezo technology is becoming increasingly crucial as intelligent devices use vibration sensors to detect vibrations in consumer electronics, the automotive industry, architectural design, and other applications. A wide range of applications is now possible with piezoelectric sensors, such as skin-attachable devices that monitor health and detect diseases. In this article, copper nanoparticles are used in the piezoelectric sensor as the driving agent of the magnetic field. Magnetic nanocatalysts containing copper nanoparticles are used due to their cheapness and availability. Considering that the increase of the electric field acting on the piezoelectric increases the damping (As a result, damping materials reduce radiation noise and increase material transfer losses by altering the natural vibration frequency of the vibrating surface). Among the advantages of this method are depreciating a significant amount of input energy using high energy absorption capacity and controlling slight vibrations in the sensors.

Keywords

Acknowledgement

This work was supported by Supported by General Program of Basic Science Foundation of Jiangsu Province (Grant No. 21KJD510008).

References

  1. Akaydin, H.D., Elvin, N. and Andreopoulos, Y. (2010), "Energy harvesting from highly unsteady fluid flows using Piezoelectric materials", J. Intel. Mater. Syst. Struct., 21(13), 1263-1278. https://doi.org/10.1177/1045389X10366317.
  2. Alder, J.F. and McCallum, J.J. (1983), "Piezoelectric crystals for mass and chemical measurements. A review", Analyst, 108(1291), 1169-1189. https://doi.org/10.1039/AN9830801169.
  3. Ali Soomro, R., Tufail Hussain Sherazi, S., Memon, N., Raza Shah, M., Hussain Kalwar, N., Richard Hallam, K. and Shah, A. (2014), "Synthesis of air stable copper nanoparticles and their use in catalysis", Adv. Mater. Lett., 5(4), 191-198. https://doi.org/10.5185/amlett.2013.8541.
  4. Ando, M., Takeshima, S., Ishiura, Y., Ando, K. and Onishi, O. (2017), "Piezoelectric antibacterial fabric comprised of poly(l-lactic acid) yarn", JPN J. Appl. Phys., 56(10S), 10PG01. https://doi.org/10.7567/JJAP.56.10PG01.
  5. Azimi, M., Mirjavadi, S.S., Shafiei, N. and Hamouda, A.M.S. (2016), "Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam", Appl. Phys. A, 123(1), 104. https://doi.org/10.1007/s00339-016-0712-5.
  6. Azimi, M., Mirjavadi, S.S., Shafiei, N., Hamouda, A.M.S. and Davari, E. (2018), "Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution", Mech. Adv. Mater. Struct., 25(6), 467-480. https://doi.org/10.1080/15376494.2017.1285455.
  7. Cao, Z., Zhang, L., Ahmad, A.M., Alsaadi, F.E. and Alassafi, M.O. (2022), "Adaptive neural prescribed performance control for switched pure-feedback non-linear systems with input quantization", Assembly Automation, 42(6), 869-880. https://doi.org/10.1108/AA-05-2022-0126.
  8. Chen, Y., Nie, G., Zhang, Q., Ma, S., Li, H. and Hu, Q. (2015), "Copper-Catalyzed [3+2] cycloaddition/oxidation reactions between nitro-olefins and organic azides: Highly regioselective synthesis of NO2-substituted 1,2,3-Triazoles", Organ. Lett., 17(5), 1118-1121. https://doi.org/10.1021/ol503687w.
  9. Cheng, L.Q. and Li, J.F. (2016), "A review on one dimensional perovskite nanocrystals for piezoelectric applications", J. Materiom., 2(1), 25-36. https://doi.org/10.1016/j.jmat.2016.02.003.
  10. Crooks, R.M., Zhao, M., Sun, L., Chechik, V. and Yeung, L.K. (2001), "Dendrimer-encapsulated metal nanoparticles:  synthesis, characterization, and applications to catalysis", Account. Chem. Res., 34(3), 181-190. https://doi.org/10.1021/ar000110a.
  11. d'Halluin, M., Mabit, T., Fairley, N., Fernandez, V., Gawande, M.B., Le Grognec, E. and Felpin, F.X. (2015), "Graphite-supported ultra-small copper nanoparticles-Preparation, characterization and catalysis applications", Carbon, 93 974-983. https://doi.org/10.1016/j.carbon.2015.06.017.
  12. Deka, P., Borah, B.J., Saikia, H. and Bharali, P. (2019), "Cu-based nanoparticles as emerging environmental catalysts", Chem. Record, 19(2-3), 462-473. https://doi.org/10.1002/tcr.201800055.
  13. Ebrahimi, F., Habibi, M. and Safarpour, H. (2019), "On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell", Eng. Comput., 35(4), 1375-1389. https://doi.org/10.1007/s00366-018-0669-4.
  14. Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837.
  15. Ebrahimi, F. and Shafiei, N. (2017), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory", Mech. Adv. Mater. Struct., 24(9), 761-772. https://doi.org/10.1080/15376494.2016.1196781.
  16. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499.
  17. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5(2), 141. https://doi.org/10.12989/anr.2017.5.2.141.
  18. Elahi, H., Munir, K., Eugeni, M., Abrar, M., Khan, A., Arshad, A. and Gaudenzi, P. (2020), "A review on applications of piezoelectric materials in aerospace industry", Integr. Ferroelec., 211(1), 25-44. https://doi.org/10.1080/10584587.2020.1803672.
  19. Esmailpoor Hajilak, Z., Pourghader, J., Hashemabadi, D., Sharifi Bagh, F., Habibi, M. and Safarpour, H. (2019), "Multilayer GPLRC composite cylindrical nanoshell using modified strain gradient theory", Mech. Bas. Des. Struct. Mach., 47(5), 521-545. https://doi.org/10.1080/15397734.2019.1566743.
  20. Fan, X., Wei, G., Lin, X., Wang, X., Si, Z., Zhang, X., Shao, Q., Mangin, S., Fullerton, E., Jiang, L. and Zhao, W. (2020), "Reversible switching of interlayer exchange coupling through atomically thin VO2 via electronic state modulation", Matt., 2(6), 1582-1593. https://doi.org/10.1016/j.matt.2020.04.001.
  21. Fang, Q., Liu, X., Zeng, K., Zhang, X., Zhou, M. and Du, J. (2022), "Centrifuge modelling of tunnelling below existing twin tunnels with different types of support", Undergr. Space, 7(6), 1125-1138. https://doi.org/10.1016/j.undsp.2022.02.007.
  22. Fu, F., Ciganda, R., Wang, Q., Tabey, A., Wang, C., Escobar, A., Martinez-Villacorta, A.M., Hernandez, R., Moya, S., Fouquet, E., Ruiz, J. and Astruc, D. (2018), "Cobaltocene reduction of Cu and Ag salts and catalytic behavior of the nanoparticles formed", ACS Catal., 8(9), 8100-8106. https://doi.org/10.1021/acscatal.8b02338.
  23. Gautschi, G. (2002), Piezoelectric Sensors, Springer Berlin Heidelberg, Berlin, Heidelberg.
  24. Gawande, M.B., Goswami, A., Felpin, F.X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R. and Varma, R.S. (2016), "Cu and Cu-based nanoparticles: Synthesis and applications in catalysis", Chem. Rev., 116(6), 3722-3811. https://doi.org/10.1021/acs.chemrev.5b00482.
  25. Ghadiri, M., Hosseini, S.H.S. and Shafiei, N. (2016a), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., 23(12), 1414-1420. https://doi.org/10.1080/15376494.2015.1091527.
  26. Ghadiri, M., Mahinzare, M., Shafiei, N. and Ghorbani, K. (2017a), "On size-dependent thermal buckling and free vibration of circular FG Microplates in thermal environments", Microsyst. Technol., 23(10), 4989-5001. https://doi.org/10.1007/s00542-017-3308-x.
  27. Ghadiri, M. and Shafiei, N. (2016a), "Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen's theory using differential quadrature method", Microsyst. Technol., 22(12), 2853-2867. https://doi.org/10.1007/s00542-015-2662-9.
  28. Ghadiri, M. and Shafiei, N. (2016b), "Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method", J. Vib. Control, 23(19), 3247-3265. https://doi.org/10.1177/1077546315627723.
  29. Ghadiri, M. and Shafiei, N. (2016c), "Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions", Acta Astronautica, 121, 221-240. https://doi.org/10.1016/j.actaastro.2016.01.003.
  30. Ghadiri, M., Shafiei, N. and Akbarshahi, A. (2016b), "Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam", Appl. Phys. A, 122(7), 673. https://doi.org/10.1007/s00339-016-0196-3.
  31. Ghadiri, M., Shafiei, N. and Alavi, H. (2017b), "Thermo-mechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770.
  32. Ghadiri, M., Shafiei, N. and Alavi, H. (2017c), "Vibration analysis of a rotating nanoplate using nonlocal elasticity theory", J. Solid Mech., 9(2), 319-337. 20.1001.1.20083505.2017.9.2.8.5. 20.1001.1.20083505.2017.9.2.8.5
  33. Ghadiri, M., Shafiei, N. and Alireza Mousavi, S. (2016c), "Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM", Appl. Phys. A, 122(9), 837. https://doi.org/10.1007/s00339-016-0364-5.
  34. Ghadiri, M., Shafiei, N. and Babaei, R. (2017d), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., 25(2), 197-207. https://doi.org/10.12989/SCS.2017.25.2.197.
  35. Ghadiri, M., Shafiei, N. and Safarpour, H. (2017e), "Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen's nonlocal elasticity", Microsyst. Technol., 23(4), 1045-1065. https://doi.org/10.1007/s00542-016-2822-6.
  36. Ghadiri, M., Shafiei, N., Salekdeh, S.H., Mottaghi, P. and Mirzaie, T. (2016d), "Investigation of the dental implant geometry effect on stress distribution at dental implant-bone interface", J. Brazil. Soc. Mech. Sci. Eng., 38(2), 335-343. https://doi.org/10.1007/s40430-015-0472-8.
  37. Ghazanfari, A., Soleimani, S.S., Keshavarzzadeh, M., Habibi, M., Assempuor, A. and Hashemi, R. (2020), "Prediction of FLD for sheet metal by considering through-thickness shear stresses", Mech. Bas. Des. Struct. Mach., 48(6), 755-772. https://doi.org/10.1080/15397734.2019.1662310.
  38. Ghosh, B.K., Hazra, S., Naik, B. and Ghosh, N.N. (2015), "Preparation of Cu nanoparticle loaded SBA-15 and their excellent catalytic activity in reduction of variety of dyes", Powder Technology. 269, 371-378. https://doi.org/10.1016/j.powtec.2014.09.027.
  39. Gong, S., Zhang, B., Zhang, J., Wang, Z.L. and Ren, K. (2020), "Biocompatible Poly(lactic acid)-based hybrid piezoelectric and electret nanogenerator for electronic skin applications", Adv. Funct. Mater., 30(14), 1908724. https://doi.org/10.1002/adfm.201908724.
  40. Habibi, M., Ghazanfari, A., Assempour, A., Naghdabadi, R. and Hashemi, R. (2017), "Determination of forming limit diagram using two modified finite element models", Mech Eng., 48(4), 141-144. https://doi.org/10.22060/MEJ.2016.664.
  41. Habibi, M., Hashemi, R., Sadeghi, E., Fazaeli, A., Ghazanfari, A. and Lashini, H. (2016), "Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures", J. Mater. Eng. Perform., 25(2), 382-389. https://doi.org/10.1007/s11665-016-1882-1.
  42. Habibi, M., Hashemi, R., Tafti, M.F. and Assempour, A. (2018), "Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding", J. Manuf. Proc., 31, 310-323. https://doi.org/10.1016/j.jmapro.2017.11.009.
  43. Habibi, M., Mohammadi, A., Safarpour, H. and Ghadiri, M. (2019), "Effect of porosity on buckling and vibrational characteristics of the imperfect GPLRC composite nanoshell", Mech. Bas. Des. Struct. Mach., 1-30. https://doi.org/10.1080/15397734.2019.1701490.
  44. Hanani, Z., Mezzane, D., Amjoud, M.b., Razumnaya, A.G., Fourcade, S., Gagou, Y., Hoummada, K., El Marssi, M. and Goune, M. (2019), "Phase transitions, energy storage performances and electrocaloric effect of the lead-free Ba0.85Ca0.15Zr0.10Ti0.90O3 ceramic relaxor", J. Mater. Sci.: Mater. Electron., 30(7), 6430-6438. https://doi.org/10.1007/s10854-019-00946-5.
  45. Hashemi, H.R., Alizadeh, A.a., Oyarhossein, M.A., Shavalipour, A., Makkiabadi, M. and Habibi, M. (2019), "Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure", Wave. Random Complex Media, 31(6), 1340-1366. https://doi.org/10.1080/17455030.2019.1662968.
  46. He, Y., Wang, F., Du, G., Pan, L., Wang, K., Gerhard, R., Plath, R., Rozga, P. and Trnka, P. (2022), "Revisiting the thermal ageing on the metallised polypropylene film capacitor: from device to dielectric film", High Voltage, https://doi.org/10.1049/hve2.12278.
  47. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput., 38(Suppl 4), 3217-3235. https://doi.org/10.1007/s00366-021-01456-x.
  48. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform microtube", Eng. Comput., 38(Suppl 3), 2481-2498. https://doi.org/10.1007/s00366-021-01395-7.
  49. Huang, Z., Ding, J., Yang, X., Liu, H., Song, P., Guo, Y., Guo, Y., Wang, L. and Zhan, W. (2022), "Highly efficient oxidation of propane at low temperature over a Pt-based catalyst by optimization support", Environ. Sci. Technol., 56(23), 17278-17287. https://doi.org/10.1021/acs.est.2c05599.
  50. Hwang, G.T., Park, H., Lee, J.H., Oh, S., Park, K.I., Byun, M., Park, H., Ahn, G., Jeong, C.K., No, K., Kwon, H., Lee, S.G., Joung, B. and Lee, K.J. (2014), "Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester", Adv. Mater., 26(28), 4880-4887. https://doi.org/10.1002/adma.201400562.
  51. Jaffe, H. (1958), "Piezoelectric ceramics", J. Am. Ceramic Soc., 41(11), 494-498. https://doi.org/10.1111/j.1151-2916.1958.tb12903.x.
  52. Kelley, K.P., Yilmaz, D.E., Collins, L., Sharma, Y., Lee, H.N., Akbarian, D., van Duin, A.C.T., Ganesh, P. and Vasudevan, R.K. (2020), "Thickness and strain dependence of piezoelectric coefficient in ${\mathrm{BaTiO}}_{3}$ thin films", Phys. Rev. Mater., 4(2), 024407. 10.1103/PhysRevMaterials.4.024407.
  53. Kidwai, M., Bansal, V., Saxena, A., Aerry, S. and Mozumdar, S. (2006), "Cu-Nanoparticles: Efficient catalysts for the oxidative cyclization of Schiffs' bases", Tetrahedron Lett., 47(46), 8049-8053. https://doi.org/10.1016/j.tetlet.2006.09.066.
  54. Kuna, M. (2010), "Fracture mechanics of piezoelectric materials-Where are we right now?", Eng. Fract. Mech., 77(2), 309-326. https://doi.org/10.1016/j.engfracmech.2009.03.016.
  55. Li, D., Cao, H. and Chen, X. (2021a), "Fuzzy control of milling chatter with piezoelectric actuators embedded to the tool holder", Mech. Syst. Signal Pr., 148, 107190. https://doi.org/10.1016/j.ymssp.2020.107190.
  56. Li, P., Yang, M. and Wu, Q. (2021b), "Confidence interval based distributionally robust real-time economic dispatch approach considering wind power accommodation risk", IEEE Trans. Sustain. Energy, 12(1), 58-69. https://doi.org/10.1109/TSTE.2020.2978634.
  57. Li, X., Chen, S., Zhang, X., Li, J., Liu, H., Han, N. and Zhang, X. (2020), "Poly-l-Lactic Acid/Graphene electrospun composite nanofibers for wearable sensors", Energy Technol., 8(5), 1901252. https://doi.org/10.1002/ente.201901252.
  58. Liang, Y., Chen, Z., Yao, W., Wang, P., Yu, S. and Wang, X. (2017), "Decorating of Ag and CuO on Cu nanoparticles for enhanced high catalytic activity to the degradation of organic pollutants", Langmuir, 33(31), 7606-7614. https://doi.org/10.1021/acs.langmuir.7b01540.
  59. Liu, Z., Zheng, Z., Sudhoff, S.D., Gu, C. and Li, Y. (2016), "Reduction of common-mode voltage in multiphase two-level inverters using SPWM with phase-shifted carriers", IEEE Trans. Pow. Electron., 31(9), 6631-6645. https://doi.org/10.1109/TPEL.2015.2499380.
  60. Manohar, C.S., Kumar, B.S., Sadhu, S.P.P., Srimadh, S.K., Muthukumar, V.S., Venketesh, S. and Varma, K.B.R. (2019), "Novel Lead-free biocompatible piezoelectric Hydroxyapatite (HA)-BCZT (Ba0.85Ca0.15Zr0.1Ti0.9O3) nanocrystal composites for bone regeneration", Nanotechnol. Rev., 8(1), 61-78. https://doi.org/10.1515/ntrev-2019-0006.
  61. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A., Kazemi, M. and Structures, C. (2017a), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.
  62. Mirjavadi, S.S., Matin, A., Shafiei, N., Rabby, S. and Mohasel Afshari, B. (2017b), "Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam", J. Therm. Stress., 40(10), 1201-1214. https://doi.org/10.1080/01495739.2017.1332962.
  63. Mirjavadi, S.S., Mohasel Afshari, B., Shafiei, N., Rabby, S. and Kazemi, M. (2017c), "Effect of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro-scale Timoshenko beam", J. Vib. Control, 24(18), 4211-4225. https://doi.org/10.1177/1077546317721871.
  64. Mirjavadi, S.S., Rabby, S., Shafiei, N., Afshari, B.M. and Kazemi, M. (2017d), "On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment", Appl. Phys. A, 123(5), 315. https://doi.org/10.1007/s00339-017-0918-1.
  65. Mishra, S., Unnikrishnan, L., Nayak, S.K. and Mohanty, S. (2019), "Advances in piezoelectric polymer composites for energy harvesting applications: A systematic review", Macromolec. Mater. Eng., 304(1), 1800463. https://doi.org/10.1002/mame.201800463.
  66. Moayedi, H., Aliakbarlou, H., Jebeli, M., Noormohammadiarani, O., Habibi, M., Safarpour, H. and Foong, L. (2020a), "Thermal buckling responses of a graphene reinforced composite micropanel structure", Int. J. Appl. Mech., 12(01), 2050010. https://doi.org/10.1142/S1758825120500106.
  67. Moayedi, H., Ebrahimi, F., Habibi, M., Safarpour, H. and Foong, L.K. (2020b), "Application of nonlocal strain-stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell", Eng. Comput., 37, 3359-3374. https://doi.org/10.1007/s00366-020-01002-1.
  68. Moayedi, H., Habibi, M., Safarpour, H., Safarpour, M. and Foong, L. (2019), "Buckling and frequency responses of a graphene nanoplatelet reinforced composite microdisk", Int. J. Appl. Mech., 11(10), 1950102. https://doi.org/10.1142/S1758825119501023.
  69. Mousavi, S.M., Shafiei, N. and Dadvand, A. (2017), "Numerical simulation of subsonic turbulent flow over NACA0012 airfoil: evaluation of turbulence models", Sigma J. Eng. Nat. Sci., 35(1), 133-155.
  70. Omidi, S., Oskooee, M.B. and Shafiei, N. (2013), "Finite element analysis of an ultra-fine grained Titanium dental implant covered by different thicknesses of hydroxyapatite layer", Ind. J. Dentistry, 4(1), 1-4. https://doi.org/10.1016/j.ijd.2012.10.002.
  71. Oyarhossein, M.A., Alizadeh, A.A., Habibi, M., Makkiabadi, M., Daman, M., Safarpour, H. and Jung, D.W. (2020), "Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes", Scientif. Report., 10(1), 1-19. https://doi.org/10.1038/s41598-020-61855-w.
  72. Pan, X., Wu, W., Yu, X., Lu, L., Guo, C. and Zhao, Y. (2023), "Typical electrical, mechanical, electromechanical characteristics of copper-encapsulated REBCO tapes after processing in temperature under 250℃", Supercond. Sci. Technol., 36(3), 034004. https://doi.org/10.1088/1361-6668/acb740.
  73. Panda, P.K. and Sahoo, B. (2015), "PZT to lead free piezo ceramics: A review", Ferroelec., 474(1), 128-143. https://doi.org/10.1080/00150193.2015.997146.
  74. Poon, K.K., Wurm, M.C., Evans, D.M., Einarsrud, M.A., Lutz, R. and Glaum, J. (2020), "Biocompatibility of (Ba,Ca)(Zr,Ti)O3 piezoelectric ceramics for bone replacement materials", J. Biomed. Mater. Res. Part B: Appl. Biomater., 108(4), 1295-1303. https://doi.org/10.1002/jbm.b.34477.
  75. Qing, X., Li, W., Wang, Y. and Sun, H. (2019), "Piezoelectric transducer-based structural health monitoring for aircraft applications", Sensor., 19(3), 545. https://doi.org/10.3390/s19030545.
  76. Rajabi, A.H., Jaffe, M. and Arinzeh, T.L. (2015), "Piezoelectric materials for tissue regeneration: A review", Acta Biomaterialia, 24, 12-23. https://doi.org/10.1016/j.actbio.2015.07.010.
  77. Robertson, D., Hayward, G., Gachagan, A. and Murray, V. (2006), "Comparison of the frequency and physical nature of the lowest order parasitic mode in single crystal and ceramic 2-2 and 1-3 piezoelectric composite transducers", IEEE Trans. Ultrason., Ferroelec. Freq. Control, 53(8), 1503-1512. https://doi.org/10.1109/TUFFC.2006.1665108.
  78. Ryndzionek, R., Sienkiewicz, L., Michna, M. and Kutt, F. (2019), "Design and experiments of a piezoelectric motor using three rotating mode actuators", Sensor., 19(23), 5184. https://doi.org/10.3390/s19235184.
  79. Safarpour, H., Ghanizadeh, S.A. and Habibi, M. (2018), "Wave propagation characteristics of a cylindrical laminated composite nanoshell in thermal environment based on the nonlocal strain gradient theory", Eur. Phys. J. Plus, 133(12), 532. https://doi.org/10.1140/epjp/i2018-12385-2.
  80. Safarpour, M., Ebrahimi, F., Habibi, M. and Safarpour, H. (2020), "On the nonlinear dynamics of a multi-scale hybrid nanocomposite disk", Eng. Comput., 37(3), 2369-2388. https://doi.org/10.1007/s00366-020-00949-5.
  81. Sardarian, A.R., Eslahi, H. and Esmaeilpour, M. (2018), "Copper (II) complex supported on Fe3O4@SiO2 coated by polyvinyl alcohol as reusable nanocatalyst in N-arylation of amines and N (H)-heterocycles and green synthesis of 1H-tetrazoles", ChemistrySelect, 3(5), 1499-1511. https://doi.org/10.1002/slct.201702452.
  82. Scarisoreanu, N.D., Craciun, F., Ion, V., Birjega, R., Bercea, A., Dinca, V., Dinescu, M., Sima, L.E., Icriverzi, M., Roseanu, A., Gruionu, L. and Gruionu, G. (2017), "Lead-free piezoelectric (Ba,Ca)(Zr,Ti)O3 thin films for biocompatible and flexible devices", ACS Appl. Mater. Interf., 9(1), 266-278. https://doi.org/10.1021/acsami.6b14774.
  83. Shafiei, N., Ghadiri, M. and Mahinzare, M. (2019), "Flapwise bending vibration analysis of rotary tapered functionally graded nanobeam in thermal environment", Mech. Adv. Mater. Struct., 26(2), 139-155. https://doi.org/10.1080/15376494.2017.1365982.
  84. Shafiei, N., Ghadiri, M., Makvandi, H. and Hosseini, S.A. (2017a), "Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method", Appl. Math. Model., 43, 191-206. https://doi.org/10.1016/j.apm.2016.10.061.
  85. Shafiei, N., Hamisi, M. and Ghadiri, M. (2020), "Vibration analysis of rotary tapered axially functionally graded Timoshenko nanobeam in thermal environment", J. Solid Mech., 12(1), 16-32. https://doi.org/10.22034/JSM.2019.563759.1273.
  86. Shafiei, N. and Kazemi, M. (2017a), "Buckling analysis on the bidimensional functionally graded porous tapered nano-/microscale beams", Aerosp. Sci. Technol., 66, 1-11. https://doi.org/10.1016/j.ast.2017.02.019.
  87. Shafiei, N. and Kazemi, M. (2017b), "Nonlinear buckling of functionally graded nano-/micro-scaled porous beams", Compos. Struct., 178, 483-492. https://doi.org/10.1016/j.compstruct.2017.07.045.
  88. Shafiei, N., Kazemi, M. and Fatahi, L. (2017b), "Transverse vibration of rotary tapered microbeam based on modified couple stress theory and generalized differential quadrature element method", Mech. Adv. Mater. Struct., 24(3), 240-252. https://doi.org/10.1080/15376494.2015.1128025.
  89. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016a), "Comparison of modeling of the rotating tapered axially functionally graded Timoshenko and Euler-Bernoulli microbeams", Physica E: Low Dimens. Syst. Nanostruct., 83, 74-87. https://doi.org/10.1016/j.physe.2016.04.011.
  90. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016b), "Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen's nonlocal elasticity and DQM", Appl. Phys. A, 122(8), 728. https://doi.org/10.1007/s00339-016-0245-y.
  91. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016c), "Nonlinear vibration of axially functionally graded tapered microbeams", Int. J. Eng. Sci., 102, 12-26. https://doi.org/10.1016/j.ijengsci.2016.02.007.
  92. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016d), "On size-dependent vibration of rotary axially functionally graded microbeam", Int. J. Eng. Sci., 101, 29-44. https://doi.org/10.1016/j.ijengsci.2015.12.008.
  93. Shafiei, N., Kazemi, M., Safi, M. and Ghadiri, M. (2016e), "Nonlinear vibration of axially functionally graded non-uniform nanobeams", Int. J. Eng. Sci., 106, 77-94. https://doi.org/10.1016/j.ijengsci.2016.05.009.
  94. Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A.M.S. (2017c), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168, 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048.
  95. Shafiei, N., Mirjavadi, S.S., MohaselAfshari, B., Rabby, S. and Kazemi, M. (2017d), "Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Meth. Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007.
  96. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016f), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007.
  97. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016g), "Vibration behavior of a rotating non-uniform FG microbeam based on the modified couple stress theory and GDQEM", Compos. Struct., 149, 157-169. https://doi.org/10.1016/j.compstruct.2016.04.024.
  98. Shafiei, N. and She, G.L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133, 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004.
  99. Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Mater., 13(7), 1707. https://doi.org/10.3390/ma13071707.
  100. Shivanian, E., Ghadiri, M. and Shafiei, N. (2017), "Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation", Appl. Phys. A, 123(5), 329. https://doi.org/10.1007/s00339-017-0955-9.
  101. Si, Z., Yang, M., Yu, Y. and Ding, T. (2021), "Photovoltaic power forecast based on satellite images considering effects of solar position", Appl. Energy, 302, 117514. https://doi.org/10.1016/j.apenergy.2021.117514.
  102. Song, J., Mingotti, A., Zhang, J., Peretto, L. and Wen, H. (2022), "Accurate damping factor and frequency estimation for damped real-valued sinusoidal signals", IEEE Trans. Instrum. Measure., 71, 1-4. https://doi.org/10.1109/TIM.2022.3220300.
  103. Tressler, J.F., Alkoy, S. and Newnham, R.E. (1998), "Piezoelectric Sensors and Sensor Materials", J. Electroceram., 2(4), 257-272. https://doi.org/10.1023/A:1009926623551.
  104. Uk Son, S., Kyu Park, I., Park, J. and Hyeon, T. (2004), "Synthesis of Cu2O coated Cu nanoparticles and their successful applications to Ullmann-type amination coupling reactions of aryl chlorides", Chem. Commun., 7, 778-779. https://doi.org/10.1039/B316147A.
  105. Wang, M., Yang, M., Fang, Z., Wang, M. and Wu, Q. (2022a), "A practical feeder planning model for urban distribution system", IEEE Trans. Pow. Syst., 1-1. https://doi.org/10.1109/TPWRS.2022.3170933.
  106. Wang, P., Gao, Z., Pan, F., Moradi, Z., Mahmoudi, T. and Khadimallah, M.A. (2022b), "A couple of GDQM and iteration techniques for the linear and nonlinear buckling of bidirectional functionally graded nanotubes based on the nonlocal strain gradient theory and high-order beam theory", Eng. Anal. Bound. Elem., 143, 124-136. https://doi.org/10.1016/j.enganabound.2022.06.007.
  107. Wei, Y., Chen, C., Tan, C., He, L., Ren, Z., Zhang, C., Peng, S., Han, J., Zhou, H. and Wang, J. (2022), "High-performance visible to near-infrared broadband Bi2O2Se nanoribbon photodetectors", Adv. Opt. Mater., 10(23), 2201396. https://doi.org/10.1002/adom.202201396.
  108. Xu, P., Ding, C., Li, Z., Yu, R., Cui, H. and Gao, S. (2023a), "Photocatalytic degradation of air pollutant by modified nano titanium oxide (TiO2)in a fluidized bed photoreactor: Optimizing and kinetic modeling", Chemosphere, 319, 137995. https://doi.org/10.1016/j.chemosphere.2023.137995.
  109. Xu, P., Yuan, Q., Ji, W., Zhao, Y., Yu, R., Su, Y. and Huo, N. (2023b), "Study on electrochemical properties of carbon submicron fibers loaded with Cobalt-Ferro alloy and compounds", Crystal., 13(2), 282. https://doi.org/10.3390/cryst13020282.
  110. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 275, 114395. https://doi.org/10.1016/j.compstruct.2021.114395.
  111. Yang, L., Huang, H., Xi, Z., Zheng, L., Xu, S., Tian, G., Zhai, Y., Guo, F., Kong, L., Wang, Y., Lu, W., Yuan, L., Zhao, M., Zheng, H. and Liu, G. (2022a), "Simultaneously achieving giant piezoelectricity and record coercive field enhancement in relaxor-based ferroelectric crystals", Nat. Commun., 13(1), 2444. https://doi.org/10.1038/s41467-022-29962-6.
  112. Yang, S.C., Su, W.N., Lin, S.D., Rick, J., Cheng, J.H., Liu, J.Y., Pan, C.J., Liu, D.G., Lee, J.F., Chan, T.S., Sheu, H.S. and Hwang, B.J. (2011), "Preparation of nano-sized Cu from a rodlike CuFe2O4: Suitable for high performance catalytic applications", Appl. Catal. B: Environ., 106(3), 650-656. https://doi.org/10.1016/j.apcatb.2011.06.030.
  113. Yang, S.-T., Li, X.-Y., Yu, T.-L., Wang, J., Fang, H., Nie, F., He, B., Zhao, L., Lu, W.-M., Yan, S.-S., Nogaret, A., Liu, G. and Zheng, L.-M. (2022b), "High-performance neuromorphic computing based on ferroelectric synapses with excellent conductance linearity and symmetry", Adv. Funct. Mater., 32(35), 2202366. https://doi.org/10.1002/adfm.202202366.
  114. Zhang, H., Wang, H., Niu, B., Zhang, L. and Ahmad, A.M. (2021a), "Sliding-mode surface-based adaptive actor-critic optimal control for switched nonlinear systems with average dwell time", Inform. Sci., 580, 756-774. https://doi.org/10.1016/j.ins.2021.08.062.
  115. Zhang, L., Li, Y., Guo, J., Kan, Z. and Jia, Y. (2023a), "Catalytic ozonation mechanisms of Norfloxacin using Cu-CuFe2O4", Environ. Res., 216, 114521. https://doi.org/10.1016/j.envres.2022.114521.
  116. Zhang, L., Yang, X., Zhang, L., Shu, H., Jia, Y., Qi, L., Han, Y. and Wang, R. (2022), "Preparation of nano-hollow sphere hydrolytic catalyst and study on its COS removal performance", J. Nanopartic. Res., 24(12), 268. https://doi.org/10.1007/s11051-022-05641-x.
  117. Zhang, N., Guo, Y., Guo, Y., Dai, Q., Wang, L., Dai, S. and Zhan, W. (2023b), "Synchronously constructing the optimal redox-acidity of sulfate and RuOx Co-modified CeO2 for catalytic combustion of chlorinated VOCs", Chem. Eng. J., 454, 140391. https://doi.org/10.1016/j.cej.2022.140391.
  118. Zhang, X., He, X. and Zhao, S. (2021b), "Preparation of a novel Fe3O4@SiO2@propyl@DBU magnetic core-shell nanocatalyst for Knoevenagel reaction in aqueous medium", Green Chem. Lett. Rev., 14(1), 85-98. 10.1080/17518253.2020.1862312.
  119. Zhang, Y., Wu, M., Zhu, Q., Wang, F., Su, H., Li, H., Diao, C., Zheng, H., Wu, Y. and Wang, Z.L. (2019), "Performance enhancement of flexible piezoelectric nanogenerator via doping and rational 3D structure design for self-powered mechanosensational system", Adv. Funct. Mater., 29(42), 1904259. https://doi.org/10.1002/adfm.201904259.
  120. Zhu, L., Li, Z. and Hou, K. (2022), "Effect of radical scavenger on electrical tree in cross-linked polyethylene with large harmonic superimposed DC voltage", High Voltage, https://doi.org/10.1049/hve2.12302.