과제정보
Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSPHC2022/7), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
참고문헌
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175 .
- Akavci, S.S. and Tanrikulu, A.H. (2015), "Static and free vibration analysis of functionally graded plates based on a new quasi-3D and 2D shear deformation theories", Compos. Part B: Eng., 83, 203-215. https://doi.org/10.1016/j.compositesb.2015.08.043.
- Akbas, S.D. (2022), "Moving-load dynamic analysis of AFG beams under thermal effect", Steel Compos. Struct., 42(5), 649-655. https://doi.org/10.12989/scs.2022.42.5.649.
- Alimoradzadeh, M. and Akbas, S.D. (2022), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81(6), 705-714. https://doi.org/10.12989/sem.2022.81.6.705.
- Ambartsumian, S.A. (1958), "On the theory of bending plates", Izv Otd Tech NaukAN SSSR, 5, 69-77.
- Ansari, R., Torabi, J. and Hassani, R. (2018), "In-plane and shear buckling analysis of FG-CNTRC annular sector plates based on the third-order shear deformation theory using a numerical approach", Comput. Math. Appl., 75(2), 486-502. https://doi.org/10.1016/j.camwa.2017.09.022.
- Azandariani, M.G., Gholami, M. and Nikzad, A. (2022), "Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams", Adv. Nano Res., 12(1), 37-47. https://doi.org/10.12989/anr.2022.12.1.037.
- Bateni, M., Kiani, Y. and Eslami, M.R. (2013), "A comprehensive study on stability of FGM plates", Int. J. Mech. Sci., 75, 134-144. https://doi.org/10.1016/j.ijmecsci.2013.05.014.
- Bendada, A., Boutchicha, D., Khatir, S., Magagnini, E., Capozucca, R. and Wahab, M.A. (2020), "Mechanical characterization of an epoxy panel reinforced by date palm petiole particle", Steel Compos. Struct., 35(5), 627-634. https://doi.org/10.12989/scs.2020.35.5.627.
- Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. Part B: Eng., 42(2), 123-133. https://doi.org/10.1016/j.compositesb.2010.10.005.
- Chinnapandi, L.B.M., Pitchaimani, J. and Eltaher, M.A. (2022), "Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads", Steel Compos. Struct., 44(6), 829-843. https://doi.org/10.12989/scs.2022.44.6.829.
- Cho, J.R. (2022), "Nonlinear bending analysis of functionally graded CNT-reinforced composite plates", Steel Compos. Struct., 42(1), 23-32. https://doi.org/10.12989/scs.2022.42.1.023.
- Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2020a), "A threedimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porouscellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
- Cuong-Le, T., Nguyen, K.D., Hoang-Le, M., Sang-To, T., PhanVu, P., Abdel Wahab, M. (2022a), "Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate", Physica B: Condens. Matt., 631, 413726. https://doi.org/10.1016/j.physb.2022.413726.
- Cuong-Le, T., Nguyen, K.D., Lee, J. Rabczuk, T. and NguyenXuan, H. (2022b), "A 3D nano scale IGA for free vibration and buckling analyses of multi-directional FGM nanoshells", Nanotechnol., 33(6), 065703. https://doi.org/10.1088/1361-6528/ac32f9.
- Cuong-Le, T., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020b), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 38(2022), 449-460. https://doi.org/10.1007/s00366-020-01154-0.
- Daouadji, T.H. and Hadji, L. (2015), "Analytical solution of nonlinear cylindrical bending for functionally graded plates", Geomech. Eng., 9(5), 631-644. https://doi.org/10.12989/gae.2015.9.5.631.
- Du, M., Liu, J., Ye, W., Yang, F. and Lin, G. (2022), "A new semianalytical approach for bending, buckling and free vibration analyses of power law functionally graded beams", Struct. Eng. Mech., 81(2), 179-194. https://doi.org/10.12989/sem.2022.81.2.179.
- Farzam, A. and Hassani, B. (2018), "Thermal and mechanical buckling analysis of FG carbon nanotube reinforced composite plates using modified couple stress theory and isogeometric approach", Compos. Struct., 206, 774-790. https://doi.org/10.1016/j.compstruct.2018.08.030.
- Ferreira, A.J.M., Castro, L.M.S. and Bertoluzza, S. (2009), "A high order collocation method for the static and vibration analysis of composite plates using a first-order theory", Compos. Struct., 89(3), 424-432. https://doi.org/10.1016/j.compstruct.2008.09.006.
- Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
- Hagos, R.W., Choi, G., Sung, H. and Chang, S. (2022), "Substructuring-based dynamic reduction method for vibration analysis of periodic composite structures", Compos. Mater. Eng., 4(1), 43-62. https://doi.org/10.12989/cme.2022.4.1.043.
- Huang, X., Shan, H., Chu, W. and Chen, Y. (2022), "Computational and mathematical simulation for the sizedependent dynamic behavior of the high-order FG nanotubes, including the porosity under the thermal effects", Adv. Nano Res., 12(1), 101-115. https://doi.org/10.12989/anr.2022.12.1.101.
- Khatir, S., Tiachacht, S., Cuong-Le, T., Quoc Bui, T. and Abdel Wahab, M. (2019), "Damage assessment in composite laminates using ANN-PSO-IGA and Cornwell indicator", Compos. Struct., 230, 111509. https://doi.org/10.1016/j.compstruct.2019.111509.
- Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Therm. Stress., 43(1), 1-19. https://doi.org/10.1080/01495739.2019.1673687.
- Kiani, Y. and Eslami, M.R. (2013), "Instability of heated circular FGM plates on a partial Winkler-type foundation", Acta Mechanica, 224(5), 1045-1060. https://doi.org/10.1007/s00707-012-0800-3.
- Kiani, Y. and Eslami, M.R. (2014), "Nonlinear thermo-inertial stability of thin circular FGM plates", J. Franklin Inst., 351(2), 1057-1073. https://doi.org/10.1016/j.jfranklin.2013.09.013.
- Kiani, Y. and Eslami, M.R. (2015), "thermal postbuckling of imperfect circular functionally graded material plates: Examination of Voigt, Mori-Tanaka, and self-consistent schemes", J. Press. Ves. Technol., 137(2), 021201. https://doi.org/10.1115/1.4026993.
- Kiani, Y. and Mirzaei, M. (2018), "Rectangular and skew shear buckling of FG-CNT reinforced composite skew plates using Ritz method", Aerosp. Sci. Technol., 77, 388-398. https://doi.org/10.1016/j.ast.2018.03.022.
- Kumar, H.S.N. and Kattimani, S. (2022), "Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities", Struct. Eng. Mech., 82(4), 477-490. https://doi.org/10.12989/sem.2022.82.4.477.
- Levinson, M. (1980), "An accurate simple theory of static and dynamics of elastic plates", Mech. Res. Commun., 7, 343-350. https://doi.org/10.1016/0093-6413(80)90049-X.
- Liu, Y. (2011), "A refined shear deformation plate theory", Int. J. Comput. Meth. Eng. Sci. Mech., 12(3), 141-149. https://doi.org/10.1080/15502287.2011.564267.
- Liu, Y., Wang, X., Liu, L., Wu, B. and Yang, Q. (2022), "On the forced vibration of high-order functionally graded nanotubes under the rotation via intelligent modelling", Adv. Nano Res., 13(1), 47-61. https://doi.org/10.12989/anr.2022.13.1.047.
- Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of FGM beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
- Man, Y. (2022), "On the dynamic stability of a composite beam via modified high-order theory", Comput. Concrete, 30(2), 151-164. https://doi.org/10.12989/cac.2022.30.2.151.
- Mansouri, L., Djebbar, A., Khatir, S. and Abdel Wahab, M. (2018), "Effect of hygrothermal aging in distilled and saline water on the mechanical behaviour of mixed short fibre/woven composites", Compos. Struct., 207, 816-825. https://doi.org/10.1016/j.compstruct.2018.09.067.
- Mantari, J.L. and Guedes Soares, C. (2012), "Generalized hybrid quasi-3D shear deformation theory for the static analysis of advanced composite plates", Compos. Struct., 94(8), 2561-2575. https://doi.org/10.1016/j.compstruct.2012.02.019.
- Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.
- Mohammadi, M., Saidi, A.R. and Jomehzadeh, E. (2010), "Levy solution for buckling analysis of functionally graded rectangular plates", Appl. Compos. Mater., 17(2), 81-93. https://doi.org/10.1007/s10443-009-9100-z.
- Mula, S.N., Leite, A.M.S. and Loja, M.A.R. (2022), "Analytical and numerical study of failure in composite plates", Compos. Mater. Eng., 4(1), 23-41. https://doi.org/10.12989/cme.2022.4.1.023.
- Nguyen, T.K., Sab, K. and Bonnet, G. (2007), "Shear correction factors for functionally graded plates", Mech. Adv. Mater. Struct., 14(8), 567-575. https://doi.org/10.1080/15376490701672575.
- Pitakthapanaphong, S. and Busso, E.P. (2002), "Self-consistent elasto-plastic stress solutions for functionally graded material systems subjected to thermal transients", J. Mech. Phys. Solid., 50, 695-716. https://doi.org/10.1016/S0022-5096(01)00105-3.
- Polat, A. and Kaya, Y. (2022), "Analysis of discontinuous contact problem in two functionally graded layers resting on a rigid plane by using finite element method", Comput. Concrete, 29(4), 247-253. https://doi.org/10.12989/cac.2022.29.4.247.
- Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.
- Reddy, J.N. (2004.), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd Edition, CRC Press, Boca Raton.
- Reddy, B.S., Kumar, J.S., Reddy, C.E. and Reddy, K.V.K. (2013), "Buckling analysis of functionally graded material plates using higher order shear deformation theory", J. Compos., 2013, Article ID 808764. https://doi.org/10.1155/2013/808764.
- Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2022), "Vibrational behavior of exponentially graded joined conicalconical shells", Steel Compos. Struct., 43(5), 603-623. https://doi.org/10.12989/scs.2022.43.5.603.
- Saha, R. and Maiti, P.R. (2012), "Buckling of simply supported FGM plates under uniaxial load", Int. J. Civil Struct. Eng., 2(4), 1035-1050.
- Ruocco, E. and Reddy, J.N. (2019), "A closed-form solution for buckling analysis of orthotropic Reddy plates and prismatic plate structures", Compos. Part B: Eng., 169, 258-273. https://doi.org/10.1016/j.compositesb.2019.03.015.
- Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam". Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/sss.2020.26.3.361.
- Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.
- Shi, G. (2007), "A new simple third-order shear deformation theory of plates", Int. J. Solid. Struct., 44(13), 4399-4417. https://doi.org/10.1016/j.ijsolstr.2006.11.031.
- Singh, S.J. and Harsha, S.P. (2019), "Buckling analysis of FGM plates under uniform, linear and non-linear in-plane loading", J. Mech. Sci. Technol., 33(4), 1761-1767. https://doi.org/10.1007/s12206-019-0328-8.
- Sofiyev, A.H., Deniz, A., Akcay, I.H., Yusufogclu, E. (2006), "The vibration and stability of a three-layered conical shell containing an FGM layer subjected to axial compressive load", Acta Mechanica, 183, 129-144. https://doi.org/10.1007/s00707-006-0328-5.
- Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mechanica, 94(3-4), 195-220. https://doi.org/10.1007/BF01176650.
- Thai, H.T. and Choi, D.H. (2012), "An efficient and simple refined theory for buckling analysis of functionally graded plates", Appl. Math. Model., 36(3), 1008-1022. https://doi.org/10.1016/j.apm.2011.07.062.
- Thinh, T.I., Tu, T.M., Quoc, T.H. and Long, N.V. (2016), "Vibration and buckling analysis of functionally graded plates using new Eight-Unknown higher order shear deformation theory", Lat. Am. J. Solid. Struct., 13(3), 456-477. https://doi.org/10.1590/1679-78252522 .
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
- Tran, T.M. and Cuong-Le, T. (2022), "A Nonlocal IGA numerical solution for free vibration and buckling analysis of Porous Sigmoid Functionally Graded (P-SFGM) nanoplate", Int. J. Struct. Stab. Dyn., 22(16), 2250193. https://doi.org/10.1142/S0219455422501930.
- Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
- Wang, C.M., Reddy, J.N. and Lee, K.H. (2000), Shear Deformable Beams and Plates: Relationships with Classical Solutions, Elsevier.
- Yaylaci, M., Abanoz, M., Yaylaci, E.U., Olmez, H., Sekban, D.M. and Birinci, A. (2022), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct., 43(5), 661-672. https://doi.org/10.12989/scs.2022.43.5.661.
- Yin, H.M., Sun, L.Z. and Paulino, G.H. (2004), "Micromechanicsbased elastic model for functionally graded materials with particle interactions", Acta Materialia, 52(12), 3535-3543. https://doi.org/10.1016/j.actamat.2004.04.007.
- Yu, T., Zhang, J., Hu, H. and Bui, T.Q. (2019), "A novel sizedependent quasi-3D isogeometric beam model for twodirectional FG microbeams analysis", Compos. Struct., 211, 76-88. https://doi.org/10.1016/j.compstruct.2018.12.014.
- Zenkour, A.M. and Aljadani, M.H. (2018), "Mechanical buckling of functionally graded plates using a refined higher-order shear and normal deformation plate theory", Adv. Aircraft Spacecraft Sci., 5(6), 615-632. https://doi.org/10.12989/aas.2018.5.6.615.
- Zenzen, R., Khatir, S., Belaidi, I., Cuong-Le, T. and Abdel Wahab, M. (2020), "A modified transmissibility indicator and Artificial Neural Network for damage identification and quantification in laminated composite structures", Composite Structures, 248, 112497. https://doi.org/10.1016/j.compstruct.2020.112497.
- Zhang, Z., Yang, Q. and Jin, C. (2022), "Axisymmetric vibration analysis of a sandwich porous plate in thermal environment rested on Kerr foundation", Steel Compos. Struct., 43(5), 581-601. https://doi.org/10.12989/scs.2022.43.5.581.
- Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y. and Lu, J. (2022), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel Compos. Struct., 43(6), 797-808. https://doi.org/10.12989/scs.2022.43.6.797.
- Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Mechanical and thermal buckling analysis of functionally graded plates", Compos. Struct., 90(2), 161-171. https://doi.org/10.1016/j.compstruct.2009.03.005.
- Zhou, L., Moradi, Z., Al-Tamimi, H.M. and Elhosiny Ali, H. (2022), "On propagation of elastic waves in an embedded sigmoid functionally graded curved beam", Steel Compos. Struct., 44(1), 17-31. https://doi.org/10.12989/scs.2022.44.1.017.