DOI QR코드

DOI QR Code

Assessing the effect of temperature-dependent properties on the dynamic behavior of FG porous beams rested on variable elastic foundation

  • Abdeljalil Meksi (Department of Civil Engineering, Faculty of Architecture and Civil Engineering, University of Sciences and Technology Mohamed Boudiaf) ;
  • Mohamed Sekkal (University of Science and Technology Houari Boumediene (USTHB)) ;
  • Rabbab Bachir Bouiadjra (Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes) ;
  • Samir Benyoucef (Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes) ;
  • Abdelouahed Tounsi (Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes)
  • Received : 2022.03.16
  • Accepted : 2023.01.25
  • Published : 2023.03.25

Abstract

The effect of temperature dependent material properties on the free vibration of FG porous beams is investigated in the present paper. A quasi-3D shear deformation solution is used involves only three unknown function. The mechanical properties which are considered to be temperature-dependent as well as the porosity distributions are assumed to gradually change along the thickness direction according to defined law. The beam is supposed to be simply supported and lying on variable elastic foundation. The differential equation system governing the free vibration behavior of porous beams is derived based on the Hamilton principle. Navier's method for simply supported systems is then used to determine and compute the frequencies of FG porous beam. The results of the present formulation are validated by comparing with those available literatures. Finally, the effects of several parameters such as porosity distribution and the parameters of variable elastic foundation on the free vibration behavior of temperature-dependent FG beams are presented and discussed in detail.

Keywords

References

  1. Abouelregal, A.E. and Sedighi, H.M. (2021), "A new insight into the interaction of thermoelasticity with mass diffusion for a half-space in the context of Moore-Gibson-Thompson thermodiffusion theory", Appl. Phys. A, 127, 582. https://doi.org/10.1007/s00339-021-04725-0.
  2. Abouelregal, A.E., Mohammad-Sedighi, H., Faghidian, S.A. and Shirazi, A.H. (2021a), "Temperature-dependent physical characteristics of the rotating nonlocal nanobeams subject to a varying heat source and a dynamic load", Facta Univ., Ser.: Mech. Eng., 19(4), 633-56. https://doi.org/10.22190/FUME201222024A.
  3. Abouelregal, A.E., Mohammed, W.W. and Mohammad-Sedighi, H. (2021b), "Vibration analysis of functionally graded microbeam under initial stress via a generalized thermoelastic model with dual-phase lags", Arch. Appl. Mech., 91(5), 2127-2142. https://doi.org/10.1007/s00419-020-01873-2.
  4. Aboueregal, A.E. and Sedighi, H.M. (2021), "The effect of variable properties and rotation in a visco-thermoelastic orthotropic annular cylinder under the Moore-GibsonThompson heat conduction model", Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 235(5), 1004-1020. https://doi.org/10.1177/1464420720985899.
  5. Akbas, S.D. (2018), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.
  6. Al Rjoub, Y.S. and Hamad, A.G. (2017), "Free vibration of functionally Euler-Bernoulli and Timoshenko graded porous beams using the transfer matrix method", KSCE J. Civil Eng., 21, 792-806. https://doi.org/10.1007/s12205-016-0149-6.
  7. Ali Rachedi, M., Benyoucef, S., Bouhadra, A. Sekkal, M., Bachir Bouiadjra, R. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.
  8. Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundation", Struct. Eng. Mech., 65(4), 453-464. https://doi.org/10.12989/sem.2018.65.4.453.
  9. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  10. Benabderrahmane, I., Mekerbi, M., Bachir Bouiadjra, R., Benyoucef, S., Selim, M.M., Tounsi, A. and Hussain, M. (2021), "Analytical evaluation of frequencies of bidirectional FG thick beams in thermal environment and resting on different foundation", Struct. Eng. Mech., 80(4), 365-375. https://doi.org/10.12989/sem.2021.80.4.365.
  11. Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higherorder shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521.
  12. Calim, F.F. (2020), "Vibration analysis of functionally graded Timoshenko beams on Winkler-Pasternak elastic foundation", Iran. J. Sci. Technol., Trans. Civil Eng., 44, 901-920. https://doi.org/10.1007/s40996-019-00283-x.
  13. Chen, Y., Jin, G., Zhang, C., Ye, T. and Xue, Y. (2018), "Thermal vibration of FGM beams with general boundary conditions using a higher-order shear deformation theory", Compos. Part B: Eng., 153, 376-386. https://doi.org/10.1016/j.compositesb.2018.08.111.
  14. Dehrouyeh-Semnani, A.M., Mostafaei, H., Dehrouyeh, M. and Nikkhah-Bahrami, M. (2017), "Thermal pre- and post-snap-through buckling of a geometrically imperfect doubly-clamped microbeam made of temperature-dependent functionally graded materials", Compos. Struct., 170, 122-134. http://doi.org/10.1016/j.compstruct.2017.03.003.
  15. Ebrahimi, F. and Jafari, A. (2016a), "Thermo-mechanical vibration analysis of temperature- dependent porous FG beams based on Timoshenko beam theory", Struct. Eng. Mech., 59(2), 343-371. https://doi.org/10.12989/sem.2016.59.2.343.
  16. Ebrahimi, F. and Zia, M. (2015), "Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities", Acta Astronautica, 116, 117-125. https://doi.org/10.1016/j.actaastro.2015.06.014.
  17. Ebrahimi, F., Ghasemi, F. and Salari, E. (2016b), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccanica, 51, 223-249. https://doi.org/10.1007/s11012-015-0208-y.
  18. Eiadtrong, S., Wattanasakulpong, N. and Vo, T.P. (2022), "Thermal vibration of functionally graded porous beams with classical and non-classical boundary conditions using a modified Fourier method", Acta Meccanica. 234(2), 729-750. https://doi.org/10.1007/s00707-022-03401-5.
  19. Eisenberger, M. and Clastornik, J. (1987), "Vibrations and buckling of a beam on a variable Winkler elastic foundation", J. Sound Vib., 115, 233-241. https://doi.org/10.1016/0022-460X(87)90469-X
  20. Fahsi, B., Bouiadjra, R.B., Mahmoudi, A., Benyoucef, S. and Tounsi, A. (2019), "Assessing the effects of porosity on bending, buckling and vibration of FG beam resting on elastic foundation using a new refined quasi-3d theory", Mech. Compos. Mater., 55(2), 219-230. https://doi.org/10.1007/s11029-019-09805-0.
  21. Ghadiri, M. and Shafiei, N. (2016), "Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions", Acta Astronautica, 121, 221-240. https://doi.org/10.1016/j.actaastro.2016.01.003.
  22. Hadji, L., Daouadji, T.H., Meziane, M.A.A, Tlidji, Y. and Adda Bedia, E. (2016), "Analysis of functionally graded beam using a new first-order shear deformation theory", Struct. Eng. Mech., 57(2), 315-325. https://doi.org/10.12989/sem.2016.57.2.315.
  23. Hadji, L., Zouatnia, N. and Bernard, F. (2019), "An analytical solution for bending and free vibration responses of functionally graded beams with porosities, Effect of the micromechanical models", Struct. Eng. Mech., 69(2), 231-241 https://doi.org/10.12989/sem.2019.69.2.231.
  24. Hendi, A.A., Eltaher, M.A, Salwa, A.M., Attia, M.A. and Abdalla, A.W. (2021), "Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory", Steel Compos. Struct., 41(6), 787-803. https://doi.org/10.12989/scs.2021.41.6.787.
  25. Heshmati, M. and Daneshmand, F. (2018), "Vibration analysis of non-uniform porous beams with functionally graded porosity distribution", J. Mater. Des. Appl., 233(8), 1-20. https://doi.org/10.1177/1464420718780902.
  26. Mahmoudi, A., Bachir Bouiadjra, R., Benyoucef, S., Selim, M.M., Tounsi, A. and Hussain, M. (2023), "Analytical investigation of wave propagation in bidirectional FG sandwich porous plates lying on an elastic substrate", Wave. Random Complex Media, 33(1), 202-224. https://doi.org/10.1080/17455030.2022.2038814.
  27. Mekerbi, M., Benyoucef, S., Mahmoudi, A., Bourada, F. and Tounsi, A. (2019), "Investigation on thermal buckling of porous FG plate resting on elastic foundation via quasi 3D solution", Struct. Eng. Mech., 72(4), 513-524. https://doi.org/10.12989/sem.2019.72.4.513.
  28. Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.
  29. Mouaici, F., Benyoucef, S., Ait Atmane, H. and Tounsi, A. (2016), "Effect of porosity on vibrational characteristics of nonhomogeneous plates using hyperbolic shear deformation theory", Wind. Struct., 22(4), 429-454. https://doi.org/10.12989/was.2016.22.4.429.
  30. Nemati, A.R. and Mahmoodabadi, M.J. (2019), "Effect of micromechanical models on stability of functionally graded conical panels resting on Winkler-Pasternak foundation in various thermal environments", Arch. Appl. Mech., https://doi.org/10.1007/s00419-019-01646-6. 
  31. Nguyen, T.K., Nguyen, B.D., Vo, T.P. and Thai, H.T. (2017), "Hygro-thermal effects on vibration and thermal buckling behaviours of functionally graded beams", Compos. Struct., 176, 1050-1060. https://doi.org/10.1016/j.compstruct.2017.06.036.
  32. Nguyen, T.K., Vo, T.P. and Thai, H.T. (2013), "Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory", Compos. Part B: Eng., 55, 147-157. http://doi.org/10.1016/j.compositesb.2013.06.011.
  33. Pradhan, K. and Chakraverty, S. (2013), "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", Compos. Part B: Eng., 51, 175-184. http://doi.org/10.1016/j.compositesb.2013.02.027.
  34. Pradhan, K.K. and Chakraverty, S. (2014), "Effects of different shear deformation theories on free vibration of functionally graded beams", Int. J. Mech. Sci., 82, 149-160. https://doi.org/10.1016/j.ijmecsci.2014.03.014.
  35. Pradhan, S.C. and Murmu, T. (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound Vib., 321, 342-362. https://doi.org/10.1016/j.jsv.2008.09.018.
  36. Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates". J. Therm. Stress., 21, 593-629. http://doi.org/10.1080/01495739808956165.
  37. Shahsavari, H., Talebitooti, R. and Kornokar, M. (2021), "Analysis of wave propagation through functionally graded porous cylindrical structures considering the transfer matrix method", Thin Wall. Struct., 159, 107212. https://doi.org/10.1016/j.tws.2020.107212.
  38. Shen, H.S. and Wang, Z.X. (2014), "Nonlinear analysis of shear deformable FGM beams resting on elastic foundations in thermal environments", Int. J. Mech. Sci., 81, 195-206. http://doi.org/10.1016/j.ijmecsci.2014.02.020.
  39. Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013.
  40. Sobhy, M. (2015), "Thermoelastic response of FGM plates with temperature-dependent properties resting on variable elastic foundations", J. Appl. Mech., 7(6), 1550082. https://doi.org/10.1142/S1758825115500829.
  41. Srikarun, B., Songsuwan, W. and Wattanasakulpong, N. (2021), "Linear and nonlinear static bending of sandwich beams with functionally graded porous core under different distributed loads", Compos. Struct., 276, 114538. https://doi.org/10.1016/j.compstruct.2021.114538.
  42. Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62, 57-66. http://doi.org/10.1016/j.ijmecsci.2012.05.014.
  43. Tlidji, Y., Benferhat, R. and Hassaine Daouadji, T. (2021), "Study and analysis of the free vibration for FGM microbeams containing various distribution shape of porosity", Struct. Eng. Mech., 77(2), 217-229. https://doi.org/10.12989/sem.2021.77.2.217.
  44. Tossapanon, P. and Wattanasakulpong, N. (2016), "Stability and free vibration of functionally graded sandwich beams resting on two-parameter elastic foundation", Compos. Struct., 142, 215-225. https://doi.org/10.1016/j.compstruct.2016.01.085.
  45. Wang, W., Ren, H., Fu, T. and Shi, C. (2020), "Hygrothermal mechanical behaviors of axially functionally gradedmicrobeams using a refined first order shear deformation theory", Acta Astronautica, 166, 306-316. https://doi.org/10.1016/j.actaastro.2019.10.036.
  46. Wattanasakulpong, N. and Chaikittiratana, A. (2015), "Flexural vibration of imperfect functionally graded beams on timoshenko beam theory", Chebyshev Colloc. Meth. Meccanica, 50, 1331-1342. https://doi.org/10.1007/s11012-014-0094-8.
  47. Wattanasakulpong, N. and Eiadtrong, S. (2022), "Transient responses of sandwich plates with a functionally graded porous core: Jacobi-Ritz method", Int. J. Struct. Stab. Dyn., 23(4), 2350039. https://doi.org/10.1142/S0219455423500396.
  48. Wattanasakulpong, N. and Ungbhakorn, N. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
  49. Yahiaoui, M., Tounsi, A, Fahsi, B., Bachir Bouiadjra, R. and Benyoucef, S. (2018), "The role of micromechanical models in the mechanical response of elastic foundation FG sandwich thick beams", Struct. Eng. Mech., 68(1), 53-66. https://doi.org/10.12989/sem.2018.68.1.053.
  50. Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.107.