DOI QR코드

DOI QR Code

Vibrational behaviour of higher-order cylindrical shells

  • Longjie Zhang (School of Civil Engineering, Architecture and Environment, Hubei University of Technology)
  • Received : 2022.06.26
  • Accepted : 2023.02.20
  • Published : 2023.02.25

Abstract

Dynamic analysis of a shear deformable shell is investigated with accounting thickness stretching using Hamilton's principle. Through this method, the total transverse is composed into bending, shearing and stretching portions, in which the third part is responsible for deformation along the transverse direction. After computation of the strain, kinetic and external energies, the governing motion equations are derived using Hamilton's principle. A comparative study is presented before presentation of full numerical results for confirmation of the formulation and methodology. The results are presented with and without thickness stretching to show importance of the proposed theory in comparison with previous theories without thickness stretching.

Keywords

References

  1. Abedini, M. and Zhang, C. (2022), "Residual capacity assessment of post-damaged RC columns exposed to high strain rate loading", Steel Compos. Struct., Int. J., 45(3), 389-408. https://doi.org/10.12989/scs.2022.45.3.389
  2. Abualnour, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047
  3. Adab, N. and Arefi, M. (2022), "Vibrational behavior of truncated conical porous GPL-reinforced sandwich micro/nano-shells". Eng. Comput. https://doi.org/10.1007/s00366-021-01580-8
  4. Adab, N., Arefi, M. and Amabili, M. (2022), "A comprehensive vibration analysis of rotating truncated sandwich conical microshells including porous core and GPL-reinforced face-sheets", Compos. Struct., 279, 114761. https://doi.org/10.1016/j.compstruct.2021.114761
  5. Al-Furjan, M.S.H., Habibi, M., Jung, D.W., Sadeghi, S., Safarpour, H., Tounsi, A. and Chen, G. (2022), "A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel", Eng. Comput., 38, 1679-1696. https://doi.org/10.1007/s00366-020-01130-8
  6. Al-Osta, M.A., Saidi, H., Tounsi, A., Al-Dulaijan, S.U., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2021), "Influence of porosity on the hygro-thermo-mechanical bending response of an AFG ceramic-metal plates using an integral plate model", Smart Struct. Syst., Int. J., 28(4), 499-513. https://doi.org/10.12989/sss.2021.28.4.499
  7. Alibeigloo, A. and Shaban, M. (2013), "Free vibration analysis of carbon nanotubes by using three-dimensional theory of elasticity", Acta Mech., 224, 1415-1427. https://doi.org/10.1007/s00707-013-0817-2
  8. Amabili, M. (2011), "Nonlinear vibrations of laminated circular cylindrical shells: Comparison of different shell theories", Compos. Struct., 94(1), 207-220. https://doi.org/10.1016/j.compstruct.2011.07.001
  9. Arefi, M. (2013), "Nonlinear thermoelastic analysis of thick-walled functionally graded piezoelectric cylinder", Acta Mech., 224(11), 2771-2783. https://doi.org/10.1007/s00707-013-0888-0
  10. Arefi, M. (2014), "A complete set of equations for piezomagnetoelastic analysis of a functionally graded thick shell of revolution", Lat. Am. J. Solids Struct., 11(11), 2073-2098. https://doi.org/10.1590/S1679-78252014001100009
  11. Arefi, M. (2020), "Electro-mechanical vibration characteristics of piezoelectric nano shells", Thin-Wall. Struct., 155, 106912. https://doi.org/10.1016/j.tws.2020.106912
  12. Arefi, M. and Adab, N. (2021), "Coupled stress based formulation for static and dynamic analyses of a higher-order shear and normal deformable FG-GPL reinforced microplates", Wave. Random Complex Media. https://doi.org/10.1080/17455030.2021.1989084
  13. Arefi, M. and Civalek, O. (2020) "Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory", Arch. Civil Mech. Eng., 20(1), 1-17. https://doi.org/10.1007/s43452-020-00032-2
  14. Arefi, M. and Nahas, I. (2014), "Nonlinear electro thermo elastic analysis of a thick spherical functionally graded piezoelectric shell", Compos. Struct., 118, 510-518. https://doi.org/10.1016/j.compstruct.2014.08.002
  15. Arefi, M. and Rahimi, G.H. (2010), "Thermo elastic analysis of a functionally graded cylinder under internal pressure using first order shear deformation theory", Sci. Res. Essays, 5(12), 1442-1454. https://doi.org/10.5897/SRE.9000953
  16. Arefi, M. and Rahimi, G.H. (2011), "Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart Struct. Syst., Int. J., 8(5), 433-447. https://doi.org/10.12989/sss.2011.8.5.433
  17. Arefi, M. and Rahimi, G.H. (2012a), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart Struct. Syst., Int. J., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127
  18. Arefi, M. and Rahimi, G.H. (2012b), "Three-dimensional multi-field equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity", Acta Mech., 223(1), 63-79. https://doi.org/10.1007/s00707-011-0536-5
  19. Arefi, M. and Rahimi, G.H. (2012c), "Comprehensive thermoelastic analysis of a functionally graded cylinder with different boundary conditions under internal pressure using first order shear deformation theory", Mechanika, 18(1), 5-13. https://doi.org/10.5755/j01.mech.18.1.1273
  20. Arefi, M. and Rahimi, G.H. (2014), "Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder", Smart Struct. Syst., Int. J., 13(1), 1-24. https://doi.org/10.12989/sss.2014.13.1.001
  21. Arefi, M. and Zenkour, A.M. (2016), "A simplified shear and normal deformations nonlocal theory for bending of functionally graded piezomagnetic sandwich nanobeams in magneto-thermo-electric environment", J. Sandw. Struct. Mater., 18(5), 624-651. https://doi.org/10.1177/1099636216652
  22. Arefi, M. and Zenkour, A.M. (2017a), "Transient analysis of a three-layer microbeam subjected to electric potential", Int. J. Smart. Nano. Mater., 8(1), 20-40. https://doi.org/10.1080/19475411.2017.1292967
  23. Arefi, M. and Zenkour, A.M. (2017b), "Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model", J. Intel. Mater. Syst. Struct., 28(17), 2403-2413. https://doi.org/10.1177/1045389X17689930
  24. Arefi, M. and Zenkour, A.M. (2018), "Size-dependent electroelastic analysis of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory", J. Intel. Mater. Syst. Struct., 29(7), 1394-1406. https://doi.org/10.1177/1045389X17733333
  25. Arefi, M. and Zenkour, A.M. (2019), "Effect of thermo-magneto-electro-mechanical fields on the bending behaviors of a three-layered nanoplate based on sinusoidal shear-deformation plate theory", J. Sandw. Struct. Mater., 21(2), 639-669. https://doi.org/10.1177/1099636217697497
  26. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2011), "Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material", Int. J. Phys. Sci., 6(27), 6315-6322. https://doi.org/10.5897/IJPS10.597
  27. Arefi, M., Mohammadi, M., Tabatabaeian, A., Dimitri, R. and Tornabene, F. (2018), "Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels", Steel Compos. Struct., Int. J., 27(4), 525-536. https://doi.org/10.12989/scs.2018.27.4.525
  28. Arefi, M., Bidgoli, E.M.R., Dimitri, R., Tornabene, F. and Reddy, J.N. (2019), "Size-dependent free vibrations of FG polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on Pasternak foundations", Appl. Sci., 9(8), 1580. https://doi.org/10.3390/app9081580
  29. Arefi, M., Kiani, M. and Zenkour, A.M. (2020), "Size-dependent free vibration analysis of a three-layered exponentially graded nano-/micro-plate with piezomagnetic face sheets resting on Pasternak's foundation via MCST", J. Sandw. Struct. Mater., 22(1), 55-86. https://doi.org/10.1177/1099636217734279
  30. Bai, X., Shi, H., Zhang, K., Zhang, X. and Wu, Y. (2022), "Effect of the fit clearance between ceramic outer ring and steel pedestal on the sound radiation of full ceramic ball bearing system", J. Sound Vib., 529, 116967. https://doi.org/10.1016/j.jsv.2022.116967
  31. Ben-Youssef, Y., Kerboua, Y. and Lakis, A.A. (2021), "An analytical approach for the nonlinear free vibration analysis of thin-walled circular cylindrical shells", Int. J. Struct. Stab. Dyn., 21(12), 2150172. https://doi.org/10.1142/S0219455421501728
  32. Beni, Y.T., Mehralian, F. and Razavi, H. (2015), "Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory", Compos. Struct., 120, 65-78. https://doi.org/10.1016/j.compstruct.2014.09.065
  33. Bert, C.W. and Kumar, M. (1982), "Vibration of cylindrical shells of bimodulus composite materials", J. Sound Vib., 81(1), 107-121. https://doi.org/10.1016/0022-460X(82)90180-8
  34. Bert, C.W., Baker, J.L. and Egle, D.M. (1969), "Free vibrations of multilayer anisotropic cylindrical shells", J. Compos. Mater., 3(3), 480-499. https://doi.org/10.1177/002199836900300312
  35. Chen, H., Wang, A., Hao, Y. and Zhang, W. (2017), "Free vibration of FGM sandwich doubly-curved shallow shell based on a new shear deformation theory with stretching effects", Compos. Struct., 179, 50-60. https://doi.org/10.1016/j.compstruct.2017.07.032
  36. Cui, X., Li, C., Zhang, Y., Said, Z., Debnath, S., Sharma, S., Ali, H.M., Yang, M., Gao, T. and Li, R. (2022a), "Grindability of titanium alloy using cryogenic nanolubricant minimum quantity lubrication", J. Manufact. Process., 80, 273-286. https://doi.org/10.1016/j.jmapro.2022.06.003
  37. Cui, X., Li, C., Zhang, Y., Ding, W., An, Q., Liu, B., Li, H.N., Said, Z., Sharma, S., Li, R. and Debnath, S. (2022b), "Comparative assessment of force, temperature, and wheel wear in sustainable grinding aerospace alloy using biolubricant", Front. Mech. Eng., 18, 3. https://doi.org/10.1007/s11465-022-0719-x
  38. Cuong-Le, T., Nguyen, K.D., Le-Minh, H., Phan-Vu, P., Nguyen-Trong, P. and Tounsi, A. (2022), "Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory", Adv. Nano Res., Int. J., 12(5), 441-455. https://doi.org/10.12989/anr.2022.12.5.441
  39. Dehsaraji, M.L., Arefi, M. and Loghman, A. (2020), "Three dimensional free vibration analysis of functionally graded nano cylindrical shell considering thickness stretching effect", Steel Compos. Struct., Int. J., 34(5), 657-670. https://doi.org/10.12989/scs.2020.34.5.657
  40. Dehsaraji, M.L., Arefi, M. and Loghman, A. (2021), "Size dependent free vibration analysis of functionally graded piezoelectric micro/nano shell based on modified couple stress theory with considering thickness stretching effect", Defence. Techn., 17(1), 119-134. https://doi.org/10.1016/j.dt.2020.01.001
  41. Duan, Z.J., Li, C.H., Zhang, Y.B., Dong, Y., Bai, X.F., Yang, M., Jia, D.Z., Li, R.Z., Cao, H.J. and Xu, X.F. (2021), "Milling surface roughness for 7050 aluminum alloy cavity influenced by nozzle position of nanofluid minimum quantity lubrication", Chin. J. Aeronaut., 34(6) 33-53. https://doi.org/10.1016/j.cja.2020.04.029
  42. Duan, Z., Li, C., Zhang, Y., Yang, M., Gao, T., Liu, X., Li, R., Said, Z., Debnath, S. and Sharma, S. (2022), "Mechanical behavior and Semiempirical force model of aerospace aluminum alloy milling using nano biological lubricant", Front. Mech. Eng., 18(3), p. 4. https://doi.org/10.1007/s11465-022-0720-4
  43. Eipakchi, H. and Mahboubi Nasrekani, F. (2022), "A closed-form solution for asymmetric free vibration analysis of composite cylindrical shells with metamaterial honeycomb core layer based on shear deformation theory", Mech. Based. Des. Struct. Mach. https://doi.org/10.1080/15397734.2022.2051183
  44. Eipakchi, H. and Nasrekani, F.M. (2020), "Vibrational behavior of composite cylindrical shells with auxetic honeycombs core layer subjected to a moving pressure", Compos. Struct., 15, 112847. https://doi.org/10.1016/j.compstruct.2020.112847
  45. Eipakchi, H. and Nasrekani, F.M. (2021), "Geometrically nonlinear frequency analysis of composite cylinders with metamaterial honeycomb layer and adjustable Poisson's ratio using the multiple scale method", Thin-Wall. Struct., 169, 108441. https://doi.org/10.1016/j.tws.2021.108441
  46. Eipakchi, H. and Nasrekani, F.M. (2022), "Response investigation of viscoelastic cylindrical shells with geometrical nonlinearity effect under moving pressure: An analytical approach", Mech. Adv. Mater. Struct., 29(8), 1124-1137. https://doi.org/10.1080/15376494.2020.1808916
  47. Eipakchi, H., Nasrekani, F.M. and Ahmadi, S. (2020), "An analytical approach for the vibration behavior of viscoelastic cylindrical shells under internal moving pressure", Acta Mech., 231(8), 3405-3418. https://doi.org/10.1007/s00707-020-02719-2
  48. Elsamak, G. and Fayed, S. (2021), "Flexural strengthening of RC beams using externally bonded aluminum plates: An experimental and numerical study", Adv. Concete Constr., Int. J., 11(6), 481-492. https://doi.org/10.12989/acc.2021.11.6.481
  49. Guenaneche, B., Benyoucef, S., Tounsi, A. and Adda Bedia, E.A. (2019), "Improved analytical method for adhesive stresses in plated beam: Effect of shear deformation", Adv. Concrete Constr., Int. J., 7(3), 151-166. https://doi.org/10.12989/acc.2019.7.3.151
  50. Gao, T., Zhang, Y., Li, C., Wang, Y., Chen, Y., An, Q., Zhang, S., Li, H.N., Cao, H., Ali, H.M. and Zhou, Z. (2022), "Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies", Front. Mech. Eng., 17(2), 24. https://doi.org/10.1007/s11465-022-0680-8
  51. Heidari, Y., Arefi, M. and Irani-Rahaghi, M. (2021), "Free vibration analysis of cylindrical micro/nano-shell reinforced with CNTRC patches", Int. J. Appl. Mech., 13(04), 2150040. https://doi.org/10.1142/S175882512150040X
  52. Huang, Y., Karami, B., Shahsavari, D. and Tounsi, A. (2021), "Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels", Arch. Civil Mech. Eng., 21, 139. https://doi.org/10.1007/s43452-021-00291-7
  53. Jafari, A.A. and Bagheri, M. (2006), "Free vibration of rotating ring stiffened cylindrical shells with non-uniform stiffener distribution", J. Sound Vib., 296(1-2), 353-367. https://doi.org/10.1016/j.jsv.2006.03.001
  54. Kholdi, M., Rahimi, G., Loghman, A., Ashrafi, H. and Arefi, M. (2022), "Analysis of thick-walled spherical shells subjected to various temperature gradients: thermo-elasto-plastic and residual stress studies", Int. J. Appl. Mech., 13(9), 2150105. https://doi.org/10.1142/S1758825121501052
  55. Khoshgoftar, M.J., Rahimi, G.H. and Arefi, M. (2013), "Exact solution of functionally graded thick cylinder with finite length under longitudinally non-uniform pressure", Mech. Res. Commun., 51, 61-66. https://doi.org/10.1016/j.mechrescom.2013.05.001
  56. Kong, F., Dong, F., Duan, M., Habibi, M., Safarpour, H. and Tounsi, A. (2022), "On the vibrations of the Electrorheological sandwich disk with composite face sheets considering pre and post-yield regions", Thin-Wall. Struct., 179, 109631. https://doi.org/10.1016/j.tws.2022.109631
  57. Kumar, P. and Srinivasa, C.V. (2002), "On buckling and free vibration studies of sandwich plates and cylindrical shells: A review", J. Thermoplast. Compos. Mater., 33(5), 673-724. https://doi.org/10.1177/0892705718809810
  58. Li, B., Li, C., Zhang, Y., Wang, Y., Jia, D. and Yang, M. (2016), "Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil", Chin. J. Aeronaut., 29(4), 1084-1095. https://doi.org/10.1016/j.cja.2015.10.012
  59. Li, L., Liu, W., Wang, Y. and Zhao, Z. (2023), "Mechanical performance and damage monitoring of CFRP thermoplastic laminates with an open hole repaired by 3D printed patches", Compos. Struct., 303, 116308. https://doi.org/10.1016/j.compstruct.2022.116308
  60. Liu, C., Zhao, Y., Wang, Y., Zhang, T. and Jia, H. (2021), "Hy Hybrid dynamic modeling and analysis of high-speed thin-rimmed gears", J. Mech. Des., 143(12), 123401. https://doi.org/10.1115/1.4051137
  61. Liu, G., Wu, S., Shahsavari, D., Karami, B. and Tounsi, A. (2022), "Dynamics of imperfect inhomogeneous nanoplate with exponentially-varying properties resting on viscoelastic foundation", Eur. J. Mech.-A/Solids, 95, 104649. https://doi.org/10.1016/j.euromechsol.2022.104649
  62. Lu, Z.Q., Gu, D.H., Ding, H., Lacarbonara, W. and Chen, L.Q. (2020), "Nonlinear vibration isolation via a circular ring", Mech. Syst. Signal Proc., 136, 106490. https://doi.org/10.1016/j.ymssp.2019.106490
  63. Melaibari, A., Daikh, A.A., Basha, M., Abdalla, A.W., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A. and Eltaher, M.A. (2022), "Free vibration of FG-CNTRCs nano-plates/shells with temperature-dependent properties", Mathematics, 10(4), 583. https://doi.org/10.3390/math10040583
  64. Menasria, A., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2020), "A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions", Steel Compos. Struct., Int. J., 36(3), 355-367. https://doi.org/10.12989/scs.2020.36.3.355
  65. Mohammad-Rezaei Bidgoli, E. and Arefi, M. (2021), "Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation", J. Sandw. Struct. Mater., 23(2), 436-472. https://doi.org/10.1177/1099636219839302
  66. Pan, X., Wu, W., Yu, X., Lu, L., Guo, C. and Zhao, Y. (2023), "Typical electrical, mechanical, electromechanical characteristics of copper-encapsulated REBCO tapes after processing in temperature under 250℃", Supercond. Sci. Tech., 36(3), 034004. https://doi.org/10.1088/1361-6668/acb740
  67. Patel, B.P., Gupta, S.S., Loknath, M.S. and Kadu, C.P. (2005), "Free vibration analysis of functionally graded elliptical cylindrical shells using higher-order theory", Compos. Struct., 69(3), 259-270. https://doi.org/10.1016/j.compstruct.2004.07.002
  68. Peng, J., Xu, C., Dai, B., Sun, L., Feng, J. and Huang, Q. (2022), "Numerical Investigation of Brittleness Effect on Strength and Microcracking Behavior of Crystalline Rock", Int. J. Geomech., 22(10), 4022178. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002529
  69. Punera, D. and Kant, T. (2017), "Free vibration of functionally graded open cylindrical shells based on several refined higher order displacement models", Thin-Wall. Struct., 119, 707-726. https://doi.org/10.1016/j.tws.2017.07.016
  70. Punera, D. and Kant, T. (2021), "An assessment of refined hierarchical kinematic models for the bending and free vibration analyses of laminated and functionally graded sandwich cylindrical panels", J. Sandw. Struct. Mater., 23(6), 2506-2546. https://doi.org/10.1177/1099636220909826
  71. Mat Daud, N.I. and Viswanathan, K.K. (2019), "Vibration of symmetrically layered angle-ply cylindrical shells filled with fluid", PLoS ONE, 14(7), e0219089. https://doi.org/10.1371/journal.pone.0219089
  72. Soroush, M., Davar, A., Eskandari Jam, J., Heydari Beni, M. and Eskandari Shahraki, M. (2021), "Free Vibration Analysis of Combined Cylindrical-Conical Composite Shells using First-Order Shear Deformation Theory", Mech. Adv. Compos. Struct., 8(2), 269-282. https://doi.org/10.22075/MACS.2021.20887.1278
  73. Rachid, A., Ouinas, D., Lousdad, A., Zaoui, F.Z., Achour, B., Gasmi, H., Butt, T.A. and Tounsi, A. (2022), "Mechanical behavior and free vibration analysis of FG doubly curved shells on elastic foundation via a new modified displacements field model of 2D and quasi-3D HSDTs", Thin-Wall. Struct., 172, 108783. https://doi.org/10.12989/sss.2018.22.3.303
  74. Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2011), "Application and analysis of functionally graded piezoelectrical rotating cylinder as mechanical sensor subjected to pressure and thermal loads", Appl. Math. Mech., 32(8), 997-1008. https://doi.org/10.1007/s10483-011-1475-6
  75. Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2012), "Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear deformation theory and energy method", Mechanika, 18(3), 292-300. https://doi.org/10.5755/j01.mech.18.3.1875
  76. Tian, L.M., Li, M.H., Li, L., Li, D.Y. and Bai, C. (2023), "Novel joint for improving the collapse resistance of steel frame structures in column-loss scenarios", Thin-Wall. Struct., 182, 110219. https://doi.org/10.1016/j.tws.2022.110219
  77. Wang, X. and Lyu, X. (2021), "Experimental study on vertical water entry of twin spheres side-by-side", Ocean Eng., 221, 108508. https://doi.org/10.1016/j.oceaneng.2020.108508
  78. Wang, X., Li, C. and Zhang, Y. (2022a), "Influence of texture shape and arrangement on nanofluid minimum quantity lubrication turning", Int. J. Adv. Manufact. Techn., 119(1-2), 631-646. https://doi.org/10.1007/s00170-021-08235-4
  79. Wang, X., Li, C., Zhang, Y., Ali, H.M., Sharma, S., Li, R., Yang, M., Said, Z. and Liu, X. (2022b), "Tribology of enhanced turning using biolubricants: A comparative assessment", Trib. Int., 107766. https://doi.org/10.1016/j.triboint.2022.107766
  80. Xiao, X., Zhang, H., Li, Z. and Chen, F. (2022), "Effect of Temperature on the Fatigue Life Assessment of Suspension Bridge Steel Deck Welds under Dynamic Vehicle Loading". Math. Prob. Eng., 7034588. https://doi.org/10.1155/2022/7034588
  81. Xu, W., Li, C.H., Zhang, Y., Ali, H.M., Sharma, S., Li, R., Yang, M., Gao, T., Liu, M., Wang, X. and Said, Z. (2022), "Electrostatic atomization minimum quantity lubrication machining: from mechanism to application", Int. J. Extrem. Manuf., 4, 042003. https://doi.org/10.1088/2631-7990/ac9652
  82. Yang, M., Li, C., Zhang, Y., Jia, D., Zhang, X., Hou, Y., Li, R. and Wang, J. (2017), "Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions", Int. J. Mach. Tool. Manufact., 122, 55-65. https://doi.org/10.1016/j.ijmachtools.2017.06.003
  83. Yang, M., Li, C., Zhang, Y., Jia, D., Li, R., Hou, Y., Cao, H. and Wang, J. (2019), "Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions", Ceram. Int., 45(12), 14908-14920. https://doi.org/10.1016/j.ceramint.2019.04.226
  84. Yang, Y., Gong, Y., Li, C., Wen, X. and Sun, J. (2021), "Mechanical performance of 316L stainless steel by hybrid directed energy deposition and thermal milling process", J. Mater. Proces. Techn., 291. 117023. https://doi.org/10.1016/j.jmatprotec.2020.117023
  85. Yang, Y., Yang, M., Li, C., Li, R., Said, Z., Ali, H.M. and Sharma, S. (2022), "Machinability of ultrasonic vibration assisted microgrinding in biological bone using nanolubricant", Front. Mech. Eng., 18(1), p. 1 https://doi.org/10.1007/s11465-022-0717-z
  86. Zenkour, A.M. and Fares, M.E. (2001), "Bending, buckling and free vibration of non-homogeneous composite laminated cylindrical shells using a refined first-order theory", Compos. B.: Eng., 32(3), 237-247. https://doi.org/10.1016/S1359-8368(00)00060-3
  87. Zhang, J., Li, C., Zhang, Y., Yang, M., Jia, D., Liu, G., Hou, Y., Li, R., Zhang, N., Wu, Q. and Cao, H. (2018), "Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air", J. Clean. Prod., 193, 236-248. https://doi.org/10.1016/j.jclepro.2018.05.009
  88. Zhang, H., Li, L., Ma, W., Luo, Y., Li, Z., Kuai, H. (2022a), "Effects of welding residual stresses on fatigue reliability assessment of a PC beam bridge with corrugated steel webs under dynamic vehicle loading", Structures, 45, 1561-1572. https://doi.org/10.1016/j.istruc.2022.09.094
  89. Zhang, H., Ouyang, Z., Li, L., Ma, W., Liu, Y., Chen, F. and Xiao, X. (2022b), "Numerical study on welding residual stress distribution of corrugated steel webs", Metals, 12(11), 1831. https://doi.org/10.3390/met12111831