DOI QR코드

DOI QR Code

Prediction of the stability of badminton net via numerical and mathematical modeling

  • Ke Cui (College of Physical Education, Changsha University) ;
  • Jiao Yuan (College of Physical Education, Hunan Normal University) ;
  • Liang Liu (College of Physical Education, Changsha University)
  • Received : 2022.08.08
  • Accepted : 2023.02.17
  • Published : 2023.02.25

Abstract

The present paper develops application of TSDT and MCST to analysis of a FG cylindrical micro-shell. The present model may be used as a sensor applicable in badminton net to detect contact. The radial and axial displacement components are described based on TSDT for more accurate analysis. The effect of small scales is accounted based on MCST. The solution is presented for a SS boundary condition to account the influence of various important parameters. A comparative analysis is presented to examine the effect of order of employed shear deformation theory on the axial and radial displacements.

Keywords

References

  1. Al-Furjan, M.S.H., Safarpour, H., Habibi, M., Safarpour, M. and Tounsi, A. (2022), "A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method", Eng. Comput., 38, 801-818. https://doi.org/10.1007/s00366-020-01088-7
  2. Al-Osta, M.A., Saidi, H., Tounsi, A., Al-Dulaijan, S.U., AlZahrani, M.M., Sharif, A. and Tounsi, A. (2021), "Influence of porosity on the hygro-thermo-mechanical bending response of an AFG ceramic-metal plates using an integral plate model", Smart Struct. Syst., Int. J., 28(4), 499-513. https://doi.org/10.12989/sss.2021.28.4.499
  3. Arefi, M. (2013), "Nonlinear thermoelastic analysis of thick-walled functionally graded piezoelectric cylinder", Acta Mech., 224(11), 2771-2783. https://doi.org/10.1007/s00707-013-0888-0
  4. Arefi, M. (2014), "A complete set of equations for piezo-magnetoelastic analysis of a functionally graded thick shell of revolution", Latin Am. J. Solids Struct., 11(11), 2073-2098. https://doi.org/10.1590/S1679-78252014001100009
  5. Arefi, M. and Civalek, O. (2020), "Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory", Arch. Civil Mech. Eng., 20(1), 1-17. https://doi.org/10.1007/s43452-020-00032-2
  6. Arefi, M. and Nahas, I. (2014), "Nonlinear electro thermo elastic analysis of a thick spherical functionally graded piezoelectric shell", Compos. Struct., 118, 510-518. https://doi.org/10.1016/j.compstruct.2014.08.002
  7. Arefi, M. and Rahimi, G.H. (2010), "Thermo elastic analysis of a functionally graded cylinder under internal pressure using first order shear deformation theory", Sci. Res. Essays, 5(12), 1442-1454. https://doi.org/10.5897/SRE.9000953
  8. Arefi, M. and Rahimi, G.H. (2011), "Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart. Struct. Syst., 8(5), 433-447. https://doi.org/10.12989/sss.2011.8.5.433
  9. Arefi, M. and Rahimi, G.H. (2012a), "Comprehensive thermoelastic analysis of a functionally graded cylinder with different boundary conditions under internal pressure using first order shear deformation theory", Mechanika, 18(1), 5-13. https://doi.org/10.5755/j01.mech.18.1.1273
  10. Arefi, M. and Rahimi, G.H. (2012b), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart Struct. Syst., Int. J., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127
  11. Arefi, M. and Rahimi, G.H. (2012c), "Three-dimensional multi-field equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity", Acta Mech., 223(1), 63-79. https://doi.org/10.1007/s00707-011-0536-5
  12. Arefi, M. and Rahimi, G.H. (2014), "Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder" Smart Struct. Syst., Int. J., 13(1), 1-24. https://doi.org/10.12989/sss.2014.13.1.001
  13. Arefi, M. and Soltan Arani, A.H. (2020), "Nonlocal vibration analysis of the three-layered FG nanoplates subjected to applied electric potential considering thickness stretching effect", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 234(9), 1183-1202. https://doi.org/10.1177/1464420720928378
  14. Arefi, M. and Zenkour, A.M. (2016), "A simplified shear and normal deformations nonlocal theory for bending of functionally graded piezomagnetic sandwich nanobeams in magneto-thermo-electric environment", J. Sandw. Struct. Mater., 18(5), 624-651. https://doi.org/10.1177/1099636216652
  15. Arefi, M. and Zenkour, A.M. (2017a), "Transient analysis of a three-layer microbeam subjected to electric potential", Int. J. Smart. Nano. Mater., 8(1), 20-40. https://doi.org/10.1080/19475411.2017.1292967
  16. Arefi, M. and Zenkour, A.M. (2017b), "Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model", J. Intel. Mater. Syst. Struct., 28(17), 2403-2413. https://doi.org/10.1177/1045389X17689930
  17. Arefi, M. and Zenkour, A.M. (2018), "Size-dependent electro-elastic analysis of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory", J. Intel. Mater. Syst. Struct., 29(7), 1394-1406. https://doi.org/10.1177/1045389X17733333
  18. Arefi, M. and Zenkour, A.M. (2019), "Effect of thermo-magneto-electro-mechanical fields on the bending behaviors of a three-layered nanoplate based on sinusoidal shear-deformation plate theory", J. Sandw. Struct. Mater., 21(2), 639-669. https://doi.org/10.1177/1099636217697497
  19. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2011), "Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material", Int. J. Phys. Sci., 6(27), 6315-6322. https://doi.org/10.5897/IJPS10.597
  20. Arefi, M., Mohammadi, M., Tabatabaeian, A., Dimitri, R. and Tornabene, F. (2018), "Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels", Steel Compos. Struct., Int. J., 27(4), 525-536. https://doi.org/10.12989/scs.2018.27.4.525
  21. Arefi, M., Bidgoli, E.M.R., Dimitri, R., Tornabene, F. and Reddy, J.N. (2019), "Size-dependent free vibrations of FG polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on Pasternak foundations", Appl. Sci., 9(8), 1580. https://doi.org/10.3390/app9081580
  22. Arefi, M., Kiani, M. and Zenkour, A.M. (2020), "Size-dependent free vibration analysis of a three-layered exponentially graded nano-/micro-plate with piezomagnetic face sheets resting on Pasternak's foundation via MCST", J. Sandw. Struct. Mater., 22(1), 55-86. https://doi.org/10.1177/1099636217734279
  23. Bouafia, K., Selim, M.M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A., Adda Bedia, E.A. and Tounsi, A. (2021), "Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model", Steel Compos. Struct., Int. J., 41(4), 487-503. https://doi.org/10.12989/scs.2021.41.4.487
  24. Cao, Y., Musharavati, F., Baharom, S., Talebizadehsardari, P., Sebaey, T.A., Eyvazian, A. and Zain, A.M. (2020), "Vibration response of FG-CNT-reinforced plates covered by magnetic layer utilizing numerical solution", Steel Compos. Struct., Int. J., 37(2), 253-258. https://doi.org/10.12989/scs.2020.37.2.253
  25. Chen, F., Chen, J., Duan, R., Habibi, M. and Khadimallah, M.A. (2022a), "Investigation on dynamic stability and aeroelastic characteristics of composite curved pipes with any yawed angle", Compos. Struct., 284, 115195. https://doi.org/10.1016/j.compstruct.2022.115195
  26. Chen, W., Fan, W., Wang, Q., Yu, X., Luo, Y., Wang, W., Lei, R. and Li, Y. (2022b), "A nano-micro structure engendered abrasion resistant, superhydrophobic, wearable triboelectric yarn for self-powered sensing", Nano Energy, 10, 107769. 10.1016/j.nanoen.2022.107769
  27. Chun, P.J., Fu, G. and Lim, Y.M. (2011), "Analytical solutions for skewed thick plates subjected to transverse loading", Struct. Eng. Mech., Int. J., 38(5), 549-562. https://doi.org/10.12989/sem.2011.38.5.549
  28. Cui, X., Li, C., Zhang, Y., Said, Z., Debnath, S., Sharma, S., Ali, H.M., Yang, M., Gao, T. and Li, R. (2022), "Grindability of titanium alloy using cryogenic nanolubricant minimum quantity lubrication", J. Manufact. Process., 80, 273-286. https://doi.org/10.1016/j.jmapro.2022.06.003
  29. Cheng, S., Liu, J., Li, Z., Zhang, P., Chen, J. and Yang, H. (2023), "3D error calibration of spatial spots based on dual position-sensitive detectors", Appl. Opt., 62(4), 933-943. https://doi.org/10.1364/AO.479307
  30. Daouadji, T.H. and Adim, B. (2017), "Mechanical behaviour of FGM sandwich plates using a quasi-3D higher order shear and normal deformation theory", Struct. Eng. Mech., Int. J., 61(1), 49-61. https://doi.org/10.12989/sem.2017.61.1.049
  31. Dehsaraji, M.L., Arefi, M. and Loghman, A. (2020), "Three dimensional free vibration analysis of functionally graded nano cylindrical shell considering thickness stretching effect", Steel Compos. Struct., Int. J., 34(5), 657-670. https://doi.org/10.12989/scs.2020.34.5.657
  32. Djilali, N., Bousahla, A.A., Kaci, A., Selim, M.M., Bourada, F., Tounsi, A., Tounsi, A., Benrahou, K.H. and Mahmoud, S.R. (2022), "Large cylindrical deflection analysis of FG carbon nanotube-reinforced plates in thermal environment using a simple integral HSDT", Steel Compos. Struct., Int. J., 42(6), 779-789. https://doi.org/10.12989/scs.2022.42.6.779
  33. Dong, Y., Gao, Y., Zhu, Q., Moradi, Z. and Safa, M. (2022), "TEGDQE implementation to investigate the vibration of FG composite conical shells considering a frequency controller solid ring", Eng. Anal. Bound. Elem., 138, 95-107. https://doi.org/10.1016/j.enganabound.2022.01.017
  34. Duan, Z., Li, C., Ding, W., Zhang, Y., Yang, M., Gao, T., Cao, H., Xu, X., Wang, D., Mao, C. and Li, H.N. (2021a), "Milling force model for aviation aluminum alloy: academic insight and perspective analysis", Chin. J. Mech. Eng., 34(1), 1-35. https://doi.org/10.1186/s10033-021-00536-9
  35. Duan, Z.J., Li, C.H., Zhang, Y.B., Dong, L., Bai, X.F., Yang, M., Jia, D.Z., Li, R., Cao, H.J. and Xu, X.F. (2021b), "Milling surface roughness for 7050 aluminum alloy cavity influenced by nozzle position of nanofluid minimum quantity lubrication", Chin. J. Aeronaut., 34(6), 33-53. https://doi.org/10.1016/j.cja.2020.04.029
  36. Duan, Z., Li, C., Zhang, Y., Yang, M., Gao, T., Liu, X., Li, R., Said, Z., Debnath, S. and Sharma, S. (2022), "Mechanical behavior and Semiempirical force model of aerospace aluminum alloy milling using nano biological lubricant", Front. Mech. Eng., 18(3), p. 4. https://doi.org/10.1007/s11465-022-0720-4
  37. Ebrahimi, F., Habibi, M. and Safarpour, H. (2019), "On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell", Eng. Comput., 35, 1375-1389. https://doi.org/10.1007/s00366-018-0669-4
  38. Fan, W., Zhang, G., Zhang, X., Dong, K., Liang, X., Chen, W., Yu, L. and Zhang, Y. (2022a), "Superior unidirectional water transport and mechanically stable 3D orthogonal woven fabric for human body moisture and thermal management", Small, 18(10), 2107150. https://doi.org/10.1002/smll.202107150
  39. Fan, W., Zhang, C., Liu, Y., Wang, S., Dong, K., Li, Y., Wu, F., Liang, J., Wang, C. and Zhang, Y. (2022b), "An ultra-thin piezoelectric nanogenerator with breathable, superhydrophobic, and antibacterial properties for human motion monitoring", Nano Res. https://doi.org/10.1007/s12274-023-5413-8
  40. Fan, W., Zhang, Y., Sun, Y., Wang, S., Zhang, C., Yu, X., Wang, W. and Dong, K. (2023), "Durable antibacterial and temperature regulated core-spun yarns for textile health and comfort applications", Chem. Eng. J., 455, 140917. https://doi.org/10.1016/j.cej.2022.140917
  41. Farid, K. and Taj, M. (2022), "Analysis of mechanical properties of microtubules under combined effects of surface and body forces for free and embedded microtubules in viscoelastic medium", Adv. Concrete Constr., Int. J., 13(3), 255-267. https://doi.org/10.12989/acc.2022.13.3.255
  42. Farokhian, A. and Salmani-Tehrani, M. (2020), "Surface and small scale effects on the dynamic buckling of carbon nanotubes with smart layers assuming structural damping", Steel Compos. Struct., Int. J., 37(2), 229-251. https://doi.org/10.12989/scs.2020.37.2.229
  43. Gao, T., Li, C., Yang, M., Zhang, Y., Jia, D., Ding, W., Debnath, S., Yu, T., Said, Z. and Wang, J. (2021), "Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant", J. Mater. Process. Technol., 290, 116976. https://doi.org/10.1016/j.jmatprotec.2020.116976
  44. Gao, T., Zhang, Y., Li, C., Wang, Y., Chen, Y., An, Q., Zhang, S., Li, H.N., Cao, H., Ali, H.M. and Zhou, Z. (2022), "Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies", Front. Mech. Eng., 17(2), p. 24. https://doi.org/10.1007/s11465-022-0680-8
  45. Ghannadpour, S.A.M. and Mehrparvar, M. (2020), "Nonlinear and post-buckling responses of FGM plates with oblique elliptical cutouts using plate assembly technique", Steel Compos. Struct., Int. J., 34(2), 227-239. https://doi.org/10.12989/scs.2020.34.2.227
  46. Guo, Y., Mi, H. and Habibi, M. (2021), "Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system", Mech. Syst. Signal. Proc., 157, 107723. https://doi.org/10.1016/j.ymssp.2021.107723
  47. Habibi, M., Hashemi, R., Sadeghi, E., Fazaeli, A., Ghazanfari, A. and Lashini, H. (2016), "Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures", J. Mater. Eng. Perform., 25, 382-389. https://doi.org/10.1007/s11665-016-1882-1
  48. Habibi, M., Hashemabadi, D. and Safarpour, H. (2019a), "Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator", Eur. Phys. J. Plus., 134, 307. https://doi.org/10.1140/epjp/i2019-12742-7
  49. Habibi, M., Mohammadgholiha, M. and Safarpour, H. (2019b), "Wave propagation characteristics of the electrically GNP-reinforced nanocomposite cylindrical shell", J Brazil Soc. Mech. Sci. Eng., 41, 221. https://doi.org/10.1007/s40430-019-1715-x
  50. Habibi, M., Mohammadgholiha, M. and Safarpour, H. (2019c), "Wave propagation characteristics of the electrically GNP-reinforced nanocomposite cylindrical shell", J. Brazil. Soc. Mech. Sci. Eng., 41, 221. https://doi.org/10.1007/s40430-019-1715-x
  51. Hajilak, Z.E., Pourghader, J., Hashemabadi, D., Bagh, F.S., Habibi, M. and Safarpour, H. (2019), "Multilayer GPLRC composite cylindrical nanoshell using modified strain gradient theory", Mech. Based. Des. Struct. Mach., 47(5), 521-545. https://doi.org/10.1080/15397734.2019.1566743
  52. Hashemi, R., Mirzaei, M. and Adlparvar, M.R. (2021a), "On thermally induced instability of FG-CNTRC cylindrical panels", Adv. Nano Res., Int. J., 10(1), 43-57. http://doi.org/10.12989/anr.2021.10.1.043
  53. Hashemi, H.R., Alizadeh, A.A., Oyarhossein, M.A., Shavalipour, A., Makkiabadi, M. and Habibi, M. (2021b), "Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure", Wave. Random Complex Media, 31(6), 1340-1366. https://doi.org/10.1080/17455030.2019.1662968
  54. Heidari, Y., Arefi, M. and Irani-Rahaghi, M. (2021), "Free vibration analysis of cylindrical micro/nano-shell reinforced with CNTRC patches", Int. J. Appl. Mech., 13(04), 2150040. https://doi.org/10.1142/S175882512150040X
  55. Huang, B.T., Li, C.H., Zhang, Y.B., Ding. W.F., Yang, M., Yang, Y.Y., Zhai, H., Xu, X.F, Wang, D.Z., Debnath, S., Jamil, M., Li, H.N., Ali, H.M., Gupta, M.K. and Said, Z. (2021), "Advances in fabrication of ceramic corundum abrasives based on sol-gel process", Chin. J. Aeronaut., 34(6), 1-17. https://doi.org/10.1016/j.cja.2020.07.004
  56. Hussain, M. (2022), "Size dependent dynamic bending nonlocal response of armchair and chiral SWCNTs based on Flugge model", Adv. Concrete Constr., Int. J., 13(6), 451-459. https://doi.org/10.12989/acc.2022.13.6.451
  57. Kachapi, S.H.H. (2020), "Nonlinear and nonclassical vibration analysis of double walled piezoelectric cylindrical nanoshell", Adv. Nano Res., Int. J., 9(4), 277-294. http://doi.org/10.12989/anr.2020.9.4.277
  58. Kang, J., Liu, T., Lu, Y., Lu, L., Dong, K., Wang, S., Li, B., Yao, Y., Bai, Y. and Fan, W. (2022), "Polyvinylidene fluoride piezoelectric yarn for real-time damage monitoring of advanced 3D textile composites", Compos. Part B.: Eng., 245, 110229. 10.1016/j.compositesb.2022.110229
  59. Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells", Smart Mater. Struct., 23, 125036. https://doi.org/10.1088/0964-1726/23/12/125036
  60. Khadimallah, M.A., Hussain, M., Khedher, K.M., Naeem, M.N. and Tounsi, A. (2020), "Backward and forward rotating of FG ring support cylindrical shells", Steel Compos. Struct., Int. J., 37(2), 137-150. https://doi.org/10.12989/scs.2020.37.2.137
  61. Kholdi, M., Rahimi, G., Loghman, A., Ashrafi, H. and Arefi, M. (2022), "Analysis of thick-walled spherical shells subjected to various temperature gradients: thermo-elasto-plastic and residual stress studies", Int. J. Appl. Mech., 13(9), 2150105. https://doi.org/10.1142/S1758825121501052
  62. Khoshgoftar, M.J., Rahimi, G.H. and Arefi, M. (2013), "Exact solution of functionally graded thick cylinder with finite length under longitudinally non-uniform pressure", Mech. Res. Commun., 51, 61-66. https://doi.org/10.1016/j.mechrescom.2013.05.001
  63. Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41(3), 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X
  64. Liu, M., Li, C., Zhang, Y., Yang, M., Gao, T., Cui, X., Wang, X.M., Xu, W.H., Zhou, Z.M., Liu, B., Said, Z., Li, R.Z. and Sharma, S. (2022), "Analysis of grinding mechanics and improved grinding force model based on randomized grain geometric characteristics", Chin. J. Aeronaut. https://doi.org/10.1016/j.cja.2022.11.005
  65. Lu, Z.Q., Gu, D.H., Ding, H., Lacarbonara, W. and Chen, L.Q. (2020), "Nonlinear vibration isolation via a circular ring", Mech. Syst. Signal Process., 136, 106490. https://doi.org/10.1016/j.ymssp.2019.106490
  66. Lu, Z.Q., Liu, W.H., Ding, H. and Chen, L.Q. (2022), "Energy transfer of an axially loaded beam with a parallel-coupled nonlinear vibration isolator", J. Vib. Acoust., 144(5), p. 051009. https://doi.org/10.1115/1.4054324
  67. Luo, Y., Miao, Y., Wang, H., Dong, K., Hou, L., Xu, Y., Chen, W., Zhang, Y., Zhang, Y. and Fan, W. (2022), "Laser-induced janus graphene/poly (p-phenylene benzobisoxazole) Fabrics with Intrinsic Flame Retardancy as Flexible Sensors and Breathable Electrodes for Fire-fighting Field", Nano Res. https://doi.org/10.1007/s12274-023-5382-y
  68. Mirjavadi, S.S., Forsat, M., Nia, A.F., Badnava, S. and Hamouda, A.M.S. (2020), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., Int. J., 8(2), 149-156. http://dx.doi.org/10.12989/anr.2020.8.2.149
  69. Mohammad-Rezaei Bidgoli, E. and Arefi, M. (2021), "Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation", J. Sandw. Struct. Mater., 23(2), 436-472. https://doi.org/10.1177/1099636219839302
  70. Pradhan, S.C. Loy, C.T. Lam, K.Y. Reddy, J.N. (2000), "Vibration characteristics of functionally graded cylindrical shells under various boundary conditions", Appl. Acoust., 61(1), 111-129. https://doi.org/10.1016/S0003-682X(99)00063-8
  71. Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2011), "Application and analysis of functionally graded piezoelectrical rotating cylinder as mechanical sensor subjected to pressure and thermal loads", Appl. Math. Mech., 32(8), 997-1008. https://doi.org/10.1007/s10483-011-1475-6
  72. Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2012), "Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear deformation theory and energy method", Mechanika, 18(3), 292-300. https://doi.org/10.5755/j01.mech.18.3.1875
  73. Santos, H., Soares, C.M.M., Soares, C.A.M. and Reddy, J.N. (2009), "A semi-analytical finite element model for the analysis of cylindrical shells made of functionally graded materials", Compos. Struct., 91(4), 427-432. https://doi.org/10.1016/j.compstruct.2008.03.004
  74. Shao, Y., Zhao, Y., Gao, J. and Habibi, M. (2021), "Energy absorption of the strengthened viscoelastic multi-curved composite panel under friction force", Arch. Civil Mech. Eng., 21, 141. https://doi.org/10.1007/s43452-021-00279-3
  75. She, Q., Hu, R., Xu, J., Liu, M., Xu, K. and Huang, H. (2022), "Learning high-DOF reaching-and-grasping via dynamic representation of gripper-object interaction", ACM Trans. Graph., 41(4), 1-14. https://doi.org/10.1145/3528223.3530091
  76. Sun, Y., Fan, W., Song, C., Gao, X., Liu, T., Song, W., Wang, S., Zhou, R., Li, G. and Li, S. (2022), "Effects of stitch yarns on interlaminar shear behavior of three-dimensional stitched carbon fiber epoxy composites at room temperature and high temperature", Adv. Compos. Hyb. Mater., 5(3), 1951-1965. https://doi.org/10.1007/s42114-022-00526-y
  77. Tahir, S.I., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2022), "The effect of three-variable viscoelastic foundation on the wave propagation in functionally graded sandwich plates via a simple quasi-3D HSDT", Steel Compos. Struct., Int. J., 42(4), 501-511. https://doi.org/10.12989/scs.2022.42.4.501
  78. Van Vinh, P., Tounsi, A. and Belarbi, M.O. (2022), "On the nonlocal free vibration analysis of functionally graded porous doubly curved shallow nanoshells with variable nonlocal parameters", Eng. Comput. https://doi.org/10.1007/s00366-022-01687-6
  79. Vinh, P.V. and Tounsi, A. (2022), "Free vibration analysis of functionally graded doubly curved nanoshells using nonlocal first-order shear deformation theory with variable nonlocal parameters", Thin-Wall. Struct., 174, 109084. https://doi.org/10.1016/j.tws.2022.109084
  80. Wang, Q. and Varadan, V.K. (2007), "Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes", Smart. Mater. Struct., 16, 178. https://doi.org/10.1088/0964-1726/16/1/022
  81. Wang, X., Li, C., Zhang, Y., Ali, H.M., Sharma, S., Li, R., Yang, M., Said, Z. and Liu, X. (2022), "Tribology of enhanced turning using biolubricants: A comparative assessment", Trib. Int., p. 107766. https://doi.org/10.1016/j.triboint.2022.107766
  82. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 275, 114395. https://doi.org/10.1016/j.compstruct.2021.114395
  83. Xu, W., Li, C.H., Zhang, Y., Ali, H.M., Sharma, S., Li, R., Yang, M., Gao, T., Liu, M., Wang, X. and Said, Z. (2022a), "Electrostatic atomization minimum quantity lubrication machining: from mechanism to application", Int. J. Extrem. Manuf., 4, 042003. https://doi.org/10.1088/2631-7990/ac9652
  84. Xu, S., He, Q., Tao, S., Chen, H., Chai, Y. and Zheng, W. (2022b), "Pig Face Recognition Based on Trapezoid Normalized Pixel Difference Feature and Trimmed Mean Attention Mechanism", IEEE. Transac. Instrum. Measure., 1. 10.1109/TIM.2022.3232093
  85. Yang, M., Li, C., Zhang, Y., Jia, D., Zhang, X., Hou, Y., Li, R. and Wang, J. (2017), "Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions", Int. J. Mach. Tools. Manufact., 122, 55-65. https://doi.org/10.1016/j.ijmachtools.2017.06.003
  86. Yang, M., Li, C., Zhang, Y., Jia, D., Li, R., Hou, Y., Cao, H. and Wang, J. (2019), "Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions", Ceram. Int., 45(12), 14908-14920. https://doi.org/10.1016/j.ceramint.2019.04.226
  87. Yin, Q., Li, C., Dong, L., Bai, X., Zhang, Y., Yang, M., Jia, D., Li, R. and Liu, Z. (2021), "Effects of physicochemical properties of different base oils on friction coefficient and surface roughness in MQL milling AISI 1045", Int. J. Prec. Eng. Manufact-Green Techn., 8(6), 1629-1647. https://doi.org/10.1007/s40684-021-00318-7
  88. Yu, X., Maalla, A. and Moradi, Z. (2022), "Electroelastic high-order computational continuum strategy for critical voltage and frequency of piezoelectric NEMS via modified multi-physical couple stress theory", Mech. Syst. Signal. Proces., 165, 108373. https://doi.org/10.1016/j.ymssp.2021.108373
  89. Zerin, Z., Turan, F. and Basoglu, M.F. (2016), "Examination of non-homogeneity and lamination scheme effects on deflections and stresses of laminated composite plates", Struct. Eng. Mech., Int. J., 57(4), 603-609. https://doi.org/10.12989/sem.2016.57.4.603
  90. Zhang, B., He, Y., Liu, D., Shen, L. and Lei, J. (2015), "Free vibration analysis of four-unknown shear deformable functionally graded cylindrical microshells based on the strain gradient elasticity theory", Compos. Struct., 119, 578-597. https://doi.org/10.1016/j.compstruct.2014.09.032
  91. Zhang, J., Li, C., Zhang, Y., Yang, M., Jia, D., Liu, G., Hou, Y., Li, R., Zhang, N., Wu, Q. and Cao, H. (2018), "Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air", J. Clean. Prod., 193, 236-248. https://doi.org/10.1016/j.jclepro.2018.05.009
  92. Zhao, C., Cheung, C.F. and Xu, P. (2020), "High-efficiency sub-microscale uncertainty measurement method using pattern recognition", ISA Transactions, 101, 503-514. https://doi.org/10.1016/j.isatra.2020.01.038
  93. Zheng, C., Yan, G., Khadimallah, M.A., Nouri, A.Z. and Behshad, A. (2022), "Investigation of hyperbolic dynamic response in concrete pipes with two-phase flow", Adv. Concrete Constr., Int. J., 13(5), 361-369. https://doi.org/10.12989/acc.2022.13.5.361