DOI QR코드

DOI QR Code

Creep analysis of plates made of functionally graded Al-SiC material subjected to thermomechanical loading

  • Majid Amiri (Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan) ;
  • Abbas Loghman (Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan) ;
  • Mohammad Arefi (Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan)
  • Received : 2022.05.10
  • Accepted : 2023.02.15
  • Published : 2023.02.25

Abstract

This paper investigates creep analysis of a plate made of Al-SiC functionally graded material using Mendelson's method of successive elastic solution. All mechanical and thermal material properties, except Poisson's ratio, are assumed to be variable along the thickness direction based on the volume fraction of reinforcement and thickness. First, the basic relations of the plate are derived using the Love-Kirchhoff plate theory. The solution of governing equations yields an elastic solution to start creep analysis. The creep behavior is demonstrated through Norton's equation based on Pandey's experimental results extracted for Al-SiC functionally graded material. A linear variation is assumed for temperature distribution along the thickness direction. The creep strain, as well as the thermal strain, are included in the governing equations derived from classical plate theory for mechanical strain. A successive elastic solution based on Mendelson's method is employed to derive the history of stresses, strains, and displacements over a long time. History of stresses and deformations are obtained over a long time to predict damage to the plate because of various loadings, and material composition along the thickness and planar directions.

Keywords

References

  1. Alibeigloo, A. (2010), "Exact solution for thermo-elastic response of functionally graded rectangular plates", Compos. Struct., 92(1), 113-121. https://doi.org/10.1016/j.compstruct.2009.07.003
  2. Altenbach, H., Kolarow, G. and Naumenko, K. (1999), "Solution of creep-damage problems for beams and rectangular plates using the Ritz and finite element method", Technische Mechanik, 19, 249-258.
  3. Anitescu, C., Atroshchenko, E., Alajlan, N. and Rabczuk, T. (2019), "Artificial neural network methods for the solution of second order boundary value problems", Comput. Mater. Continua, 59(1), 345-359. https://doi.org/10.32604/cmc.2019.06641
  4. Arefi, M. (2013), "Nonlinear thermoelastic analysis of thickwalled functionally graded piezoelectric cylinder", Acta Mech., 224(11), 2771-2783. https://doi.org/10.1007/s00707-013-0888-0
  5. Arefi, M. (2014), "A complete set of equations for piezomagnetoelastic analysis of a functionally graded thick shell of revolution", Lat. Am. J. Solids Struct., 11(11), 2073-2098. https://doi.org/10.1590/S1679-78252014001100009
  6. Arefi, M. and Nahas, I. (2014), "Nonlinear electro thermo elastic analysis of a thick spherical functionally graded piezoelectric shell", Compos. Struct., 118, 510-518. https://doi.org/10.1016/j.compstruct.2014.08.002
  7. Arefi, M. and Rahimi, G.H. (2010), "Thermo elastic analysis of a functionally graded cylinder under internal pressure using first order shear deformation theory", Sci. Res. Essays, 5(12), 1442-1454. https://doi.org/10.5897/SRE.9000953
  8. Arefi, M. and Rahimi, G.H. (2011), "Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart Struct. Syst., Int. J., 8(5), 433-447. https://doi.org/10.12989/sss.2011.8.5.433
  9. Arefi, M. and Rahimi, G.H. (2012a), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart Struct. Syst., Int. J., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127
  10. Arefi, M. and Rahimi, G.H. (2012b), "Comprehensive thermoelastic analysis of a functionally graded cylinder with different boundary conditions under internal pressure using first order shear deformation theory", Mechanika, 18(1), 5-13. https://doi.org/10.5755/j01.mech.18.1.1273
  11. Arefi, M. and Rahimi, G.H. (2012c), "Three-dimensional multifield equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity", Acta. Mech., 223(1), 63-79. https://doi.org/10.1007/s00707-011-0536-5
  12. Arefi, M. and Rahimi, G.H. (2014), "Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder", Smart Struct. Syst., Int. J., 13(1), 1-24. https://doi.org/10.12989/sss.2014.13.1.001
  13. Arefi, M. and Zenkour, A.M. (2017), "Transient analysis of a three-layer microbeam subjected to electric potential", Int. J. Smart Nano. Mater., 8(1), 20-40. https://doi.org/10.1080/19475411.2017.1292967
  14. Arefi, M. and Zenkour, A.M. (2018), "Size-dependent electroelastic analysis of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory", J. Intel. Mater. Syst. Struct., 29(7), 1394-1406. https://doi.org/10.1177/1045389X17733333
  15. Arefi, M. and Zenkour, A.M. (2019), "Effect of thermo-magnetoelectro-mechanical fields on the bending behaviors of a threelayered nanoplate based on sinusoidal shear-deformation plate theory", J. Sandw. Struct. Mater., 21(2), 639-669. https://doi.org/10.1177/1099636217697497
  16. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2011), "Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material", Int. J. Phys. Sci., 6(27), 6315-6322. https://doi.org/10.5897/IJPS10.597
  17. Arefi, M., Nasr, M. and Loghman, A. (2018a), "Creep analysis of the FG cylinders: Time-dependent non-axisymmetric behavior", Steel Compos. Struct., Int. J., 28(3), 331-347. https://doi.org/10.12989/scs.2018.28.3.331
  18. Arefi, M., Mohammadi, M., Tabatabaeian, A., Dimitri, R. and Tornabene, F. (2018b), "Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels", Steel Compos. Struct., Int. J., 27(4), 525-536. https://doi.org/10.12989/scs.2018.27.4.525
  19. Arefi, M., Bidgoli, E.M.R. and Rabczuk, T. (2019a), "Thermomechanical buckling behavior of FG GNP reinforced micro plate based on MSGT", Thin-Wall. Struct., 142, 444-459. https://doi.org/10.1016/j.tws.2019.04.054
  20. Arefi, M., Bidgoli, E.M.R., Dimitri, R., Tornabene, F. and Reddy, J.N. (2019b), "Size-dependent free vibrations of FG polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on Pasternak foundations", Appl. Sci., 9(8), 1580. https://doi.org/10.3390/app9081580
  21. Arefi, M., Kiani, M. and Zenkour, A.M. (2020), "Size-dependent free vibration analysis of a three-layered exponentially graded nano-/micro-plate with piezomagnetic face sheets resting on Pasternak's foundation via MCST", J. Sandw. Struct. Mater., 22(1), 55-86. https://doi.org/10.1177/1099636217734279
  22. Banshchikova, I. and Blinov, V. (2016). "Experimental and theoretical analysis of the deformation of transversely isotropic plates under creep conditions", J. Appl. Mech. Techn. Phys., 57(3), 501-509. https://doi.org/10.1134/S0021894416030147
  23. Bidgoli, M.R.E. and Arefi, M. (2021), "Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation", J. Sandw. Struct. Mater., 23(2), 436-472. https://doi.org/10.1177/1099636219839302
  24. Bidgoli, M.O., Arefi, M. and Loghman, A. (2021), "Thermoelastic behaviour of FGM rotating cylinder resting on friction bed subjected to a thermal gradient and an external torque", Aust. J. Mech. Eng., 19(1), 1-9. https://doi.org/10.1080/14484846.2018.1552736
  25. Bouazza, M., Tounsi, A., Adda-Bedia, E.A. and Megueni, A. (2010), "Thermoelastic stability analysis of functionally graded plates: An analytical approach", Computat. Mater. Sci., 49(4), 865-870. https://doi.org/10.1016/j.commatsci.2010.06.038
  26. Chen, F., Chen, J., Duan, R., Habibi, M. and Khadimallah, M.A. (2022a), "Investigation on dynamic stability and aeroelastic characteristics of composite curved pipes with any yawed angle", Compos. Struct., 284, 115195. https://doi.org/10.1016/j.compstruct.2022.115195
  27. Chen, W., Fan, W., Wang, Q., Yu, X., Luo, Y., Wang, W., Lei, R. and Li, Y. (2022b), "A nano-micro structure engendered abrasion resistant, superhydrophobic, wearable triboelectric yarn for self-powered sensing", Nano Energy, 10, 107769. https://doi.org/10.1016/j.nanoen.2022.107769
  28. Chepurnenko, A.S., Yazyev, B.M. and Savchenko, A.A. (2016), "Calculation for the circular plate on creep considering geometric nonlinearity", Proced. Eng., 150, 1680-1685. https://doi.org/10.1016/j.proeng.2016.07.150
  29. Cui, X., Li, C., Zhang, Y., Ding, W., An, Q., Liu, B., Li, H.N., Said, Z., Sharma, S., Li, R. and Debnath, S. (2022), "A comparative assessment of force, temperature and wheel wear in sustainable grinding aerospace alloy using bio-lubricant", Front. Mech. Eng., 18, p. 3. https://doi.org/10.1007/s11465-022-0719-x
  30. Chung, Y.L. and Chen, W.T. (2007), "The flexibility of functionally graded material plates subjected to uniform loads", J. Mech. Mater. Struct., 2(1), 63-86. https://doi.org/10.2140/jomms.2007.2.63
  31. Dong, Y., Gao, Y., Zhu, Q., Moradi, Z. and Safa, M. (2022), "TEGDQE implementation to investigate the vibration of FG composite conical shells considering a frequency controller solid ring", Eng. Anal. Bound. Elem., 138, 95-107. https://doi.org/10.1016/j.enganabound.2022.01.017
  32. Duan, Z.J., Li, C.H., Zhang, Y.B., Dong, L., Bai, X., Yang, M., Jia, D., Li, R., Cao, H. and Xu, X. (2021), "Milling surface roughness for 7050 aluminum alloy cavity influenced by nozzle position of nanofluid minimum quantity lubrication", Chin. J. Aeronaut., 34(6), 33-53. https://doi.org/10.1016/j.cja.2020.04.029
  33. Duan, Z., Li, C., Zhang, Y., Yang, M., Gao, T., Liu, X., Li, R., Said, Z., Debnath, S. and Sharma, S. (2022), "Mechanical behavior and Semiempirical force model of aerospace aluminum alloy milling using nano biological lubricant", Front. Mech. Eng., 18(3), p. 4. https://doi.org/10.1007/s11465-022-0720-4
  34. Ebrahimi, F., Habibi, M. and Safarpour, H. (2019), "On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell", Eng. Comput., 35(4), 1375-1389. https://doi.org/10.1007/s00366-018-0669-4
  35. Fan, W., Zhang, G., Zhang, X., Dong, K., Liang, X., Chen, W., Yu, L. and Zhang, Y. (2022a), "Superior unidirectional water transport and mechanically stable 3D orthogonal woven fabric for human body moisture and thermal management", Small, 18(10), 2107150. https://doi.org/10.1002/smll.202107150
  36. Fan, W., Zhang, C., Liu, Y., Wang, S., Dong, K., Li, Y., Wu, F., Liang, J., Wang, C. and Zhang, Y. (2022b), "An ultra-thin piezoelectric nanogenerator with breathable, superhydrophobic, and antibacterial properties for human motion monitoring", Nano Res. https://doi.org/10.1007/s12274-023-5413-8
  37. Fan, W., Zhang, Y., Sun, Y., Wang, S., Zhang, C., Yu, X., Wang, W. and Dong, K. (2023), "Durable antibacterial and temperature regulated core-spun yarns for textile health and comfort applications", Chem. Eng. J., 455, 140917. https://doi.org/10.1016/j.cej.2022.140917
  38. Fu, Q., Gu, M., Yuan, J. and Lin, Y. (2022), "Experimental study on vibration velocity of piled raft supported embankment and foundation for ballastless high speed railway", Buildings, 12(11), 1982. https://doi.org/10.3390/buildings12111982
  39. Fuchiyama, T. and Noda, N. (1995), "Analysis of thermal stress in a plate of functionally gradient material", JSAE review, 16(3), 263-268. https://doi.org/10.1016/0389-4304(95)00013-W
  40. Gao, T., Zhang, Y., Li, C., Wang, Y., Chen, Y., An, Q., Zhang, S., Li, H.N., Cao, H., Ali, H.M. and Zhou, Z. (2022), "Fiberreinforced composites in milling and grinding: machining bottlenecks and advanced strategies", Front. Mech. Eng., 17(2), p. 24. https://doi.org/10.1007/s11465-022-0680-8
  41. Golmakaniyoon, S. and Akhlaghi, F. (2016), "Time-dependent creep behavior of Al-SiC functionally graded beams under inplane thermal loading", Comput. Mater. Sci., 121, 182-190. https://doi.org/10.1016/j.commatsci.2016.04.038
  42. Guo, H., Zhuang, X. and Rabczuk, T. (2021a), "A deep collocation method for the bending analysis of Kirchhoff plate", arXiv preprint arXiv:2102.02617.
  43. Guo, Y., Mi, H. and Habibi, M. (2021b), "Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system", Mech. Syst. Signal. Proc., 157, 107723. https://doi.org/10.1016/j.ymssp.2021.107723
  44. Gupta, V.K., Singh, S.B., Chandrawat, H.N. and Ray, S. (2004), "Steady state creep and material parameters in a rotating disc of Al-SiCP composite", Eur. J. Mech.-A/Solids, 23(2), 335-344. https://doi.org/10.1016/j.euromechsol.2003.11.005
  45. Habibi, M., Hashemabadi, D. and Safarpour, H. (2019a), "Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator", Eur. Phys. J. Plus, 134(6), 1-23. https://doi.org/10.1140/epjp/i2019-12742-7
  46. Habibi, M., Mohammadgholiha, M. and Safarpour, H. (2019b), "Wave propagation characteristics of the electrically GNPreinforced nanocomposite cylindrical shell", J. Brazil Soc. Mech. Sci. Eng., 41(5), 1-15. https://doi.org/10.1007/s40430-019-1715-x
  47. Hashemi, H.R., Alizadeh, A.A., Oyarhossein, M.A., Shavalipour, A., Makkiabadi, M. and Habibi, M. (2021), "Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure", Waves Random Complex Media, 31(6), 1340-1366. https://doi.org/10.1080/17455030.2019.1662968
  48. He, X.T., Hu, X.J., Sun, J.Y. and Zheng, Z.L. (2010), "An analytical solution of bending thin plates with different moduli in tension and compression", Struct. Eng. Mech., Int. J., 36(3), 363-380. https://doi.org/10.12989/sem.2010.36.3.363
  49. Heidari, Y., Arefi, M. and Irani-Rahaghi, M. (2021), "Free vibration analysis of cylindrical micro/nano-shell reinforced with CNTRC patches", Int. J. Appl. Mech., 13(04), 2150040. https://doi.org/10.1142/S175882512150040X
  50. Jha, D.K., Kant, T. and Singh, R.K. (2013), "A critical review of recent research on functionally graded plates", Compos. Struct., 96, 833-849. https://doi.org/10.1016/j.compstruct.2012.09.001
  51. Kang, J., Liu, T., Lu, Y., Lu, L., Dong, K., Wang, S., Li, B., Yao, Y., Bai, Y. and Fan, W. (2022), "Polyvinylidene fluoride piezoelectric yarn for real-time damage monitoring of advanced 3D textile composites", Compos. Part B.: Eng., 245, 110229. https://doi.org/10.1016/j.compositesb.2022.110229
  52. Khanna, K., Gupta, V.K. and Nigam, S.P. (2017), "Creep analysis in functionally graded rotating disc using tresca criterion and comparison with von-mises criterion", Mater. Today: Proceedings, 4(2), 2431-2438. https://doi.org/10.1016/j.matpr.2017.02.094
  53. Kholdi, M., Rahimi, G., Loghman, A., Ashrafi, H. and Arefi, M. (2022), "Analysis of thick-walled spherical shells subjected to various temperature gradients: thermo-elasto-plastic and residual stress studies", Int. J. Appl. Mech., 13(9), 2150105. https://doi.org/10.1142/S1758825121501052
  54. Khoshgoftar, M.J., Rahimi, G.H. and Arefi, M. (2013), "Exact solution of functionally graded thick cylinder with finite length under longitudinally non-uniform pressure", Mech. Res. Commun., 51, 61-66. https://doi.org/10.1016/j.mechrescom.2013.05.001
  55. Li, R., Du, Z., Qian, X., Li, Y., Martinez-Camarillo, J.C., Jiang, L., Humayun, M.S., Chen, Z. and Zhou, Q. (2021), "High resolution optical coherence elastography of retina under prosthetic electrode", Quantit. Imag. Med. Surgery, 11(3), 918-927. https://doi.org/10.21037/qims-20-1137
  56. Li, R., Qian, X., Gong, C., Zhang, J., Liu, Y., Xu, B., Humayun, M.S. and Zhou, Q. (2022), "Simultaneous assessment of the whole eye biomechanics using ultrasonic elastography", IEEE Trans. Biomed. Eng., 1-8. https://doi.org/10.1109/TBME.2022.3215498
  57. Li, Z., Zhang, Q., Shen, H., Xiao, X., Kuai, H. and Zheng, J. (2023), "Buckling performance of the encased functionally graded porous composite liner with polyhedral shapes reinforced by graphene platelets under external pressure", ThinWall. Struct., 183, 110370. https://doi.org/10.1016/j.tws.2022.110370
  58. Liu, M., Li, C., Zhang, Y., Yang, M., Gao, T., Cui, X., Wang, X., Xu, W., Zhou, Z., Liu, B., Said, Z., Li, R. and Sharma, S. (2022), "Analysis of grinding mechanics and improved grinding force model based on randomized grain geometric characteristics", Chin. J. Aeronautics. https://doi.org/10.1016/j.cja.2022.11.005
  59. Loghman, A., Ghorbanpour Arani, A., Shajari, A.R. and Amir, S. (2011), "Time-dependent thermoelastic creep analysis of rotating disk made of Al-SiC composite", Arch. Appl. Mech., 81(12), 1853-1864. https://doi.org/10.1007/s00419-011-0522-3
  60. Loghman, A., Faegh, R.K. and Arefi, M. (2018), "Two dimensional time-dependent creep analysis of a thick-walled FG cylinder based on first order shear deformation theory", Steel Compos. Struct., Int. J., 26(5), 533-547. https://doi.org/10.12989/scs.2018.26.5.533
  61. Long, X., Guo, Y., Su, Y., Siow, K.S. and Chen, C. (2023), "Unveiling the damage evolution of SAC305 during fatigue by entropy generation", Int. J. Mech. Sci., 244, 108087. https://doi.org/10.1016/j.ijmecsci.2022.108087
  62. Luo, Y., Miao, Y., Wang, H., Dong, K., Hou, L., Xu, Y., Chen, W., Zhang, Y., Zhang, Y. and Fan, W. (2022), "Laser-induced janus graphene/poly (p-phenylene benzobisoxazole) Fabrics with Intrinsic Flame Retardancy as Flexible Sensors and Breathable Electrodes for Fire-fighting Field", Nano Res. https://doi.org/10.1007/s12274-023-5382-y
  63. Minh, P.P. and Duc, N.D. (2019), "The effect of cracks on the stability of the functionally graded plates with variablethickness using HSDT and phase-field theory", Compos. Part B: Eng., 175, 107086. https://doi.org/10.1016/j.compositesb.2019.107086
  64. Mirzaei, M.M.H., Arefi, M. and Loghman, A. (2019a), "Creep analysis of a rotating functionally graded simple blade: steady state analysis", Steel Compos. Struct., Int. J., 33(3), 463-472. https://doi.org/10.1080/17455030.2021.1926572
  65. Mirzaei, M.M.H., Loghman, A. and Arefi, M. (2019b), "Timedependent creep analysis of a functionally graded beam with trapezoidal cross section using first-order shear deformation theory", Steel Compos. Struct., Int. J., 30(6), 567-576. https://doi.org/10.12989/scs.2019.30.6.567
  66. Moradi, Z., Davoudi, M., Ebrahimi, F. and Ehyaei, A.F. (2021), "Intelligent wave dispersion control of an inhomogeneous micro-shell using a proportional-derivative smart controller", Waves Random Complex Media, 1-24. https://doi.org/10.1080/17455030.2021.1926572
  67. Omidi Bidgoli, M., Loghman, A., Arefi, M. and Faegh, R.K. (2023), "Transient stress and deformation analysis of a shear deformable FG rotating cylindrical shell made of AL-SIC subjected to thermo-mechanical loading", Austral. J. Mech. Eng., 21(1), 279-294. https://doi.org/10.1080/14484846.2020.1842296
  68. Oyarhossein, M.A., Alizadeh, A.A., Habibi, M., Makkiabadi, M., Daman, M., Safarpour, H. and Jung, D.W. (2020), "Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes", Sci. Rep., 10(1), 1-19. https://doi.org/10.1038/s41598-020-61855-w
  69. Pandey, A.B., Mishra, R.S. and Mahajan, Y.R. (1992), "Steady state creep behaviour of silicon carbide particulate reinforced aluminium composites", Acta. Metallurg. Mater., 40(8), 2045-2052. https://doi.org/10.1016/0956-7151(92)90190-P
  70. Panyatong, M., Chinnaboon, B. and Chucheepsakul, S. (2019), "Bending analysis of functionally graded plates with arbitrary shapes and boundary conditions", Struct. Eng. Mech., Int. J., 71(6), 627-641. https://doi.org/10.12989/sem.2019.71.6.627
  71. Pawar, P.B. and Utpat, A.A. (2014), "Development of aluminium based silicon carbide particulate metal matrix composite for spur gear", Proced. Mater. Sci., 6, 1150-1156. https://doi.org/10.1016/j.mspro.2014.07.187Get
  72. Peng, Y., Shi, C., Zhu, Y., Gu, M. and Zhuang, S. (2020), "Terahertz spectroscopy in biomedical field: a review on signalto-noise ratio improvement", PhotoniX, 1, 12. https://doi.org/10.1186/s43074-020-00011-z
  73. Praveen, G.N. and Reddy, J.N. (1998), "Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates", Int. J. Solids. Struct., 35(33), 4457-4476. https://doi.org/10.1016/S0020-7683(97)00253-9
  74. Reddy, J. (2000), "Analysis of functionally graded plates", Int. J. Num. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
  75. Reddy, J.N. and Wang, C.M. (1998), "Deflection relationships between classical and third-order plate theories", Acta Mech., 130(3), 199-208. https://doi.org/10.1007/BF01184311
  76. Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2011), "Application and analysis of functionally graded piezoelectrical rotating cylinder as mechanical sensor subjected to pressure and thermal loads", Appl. Math. Mech., 32(8), 997-1008. https://doi.org/10.1007/s10483-011-1475-6
  77. Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2012), "Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear deformation theory and energy method", Mechanika, 18(3), 292-300. https://doi.org/10.5755/j01.mech.18.3.1875
  78. Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X. and Rabczuk, T. (2020), "An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications", Comput. Meth. Appl. Mech. Eng., 362, 112790. https://doi.org/10.1016/j.cma.2019.112790
  79. Shao, Y., Zhao, Y., Gao, J. and Habibi, M. (2021), "Energy absorption of the strengthened viscoelastic multi-curved composite panel under friction force", Arch. Civil. Mech. Eng., 21(4), 1-29. https://doi.org/10.1007/s43452-021-00279-3
  80. Shariat, B.S. and Eslami, M.R. (2006), "Thermal buckling of imperfect functionally graded plates", Int. J. Solids. Struct., 43(14-15), 4082-4096. https://doi.org/10.1016/j.ijsolstr.2005.04.005
  81. Singh, S.B. and Ray, S. (2003), "Creep analysis in an isotropic FGM rotating disc of Al-SiC composite", J. Mater. Proc. Tech., 143, 616-622. https://doi.org/10.1016/S0924-0136(03)00445-X
  82. Sun, Y., Fan, W., Song, C., Gao, X., Liu, T., Song, W., Wang, S., Zhou, R., Li, G. and Li, S. (2022), "Effects of stitch yarns on interlaminar shear behavior of three-dimensional stitched carbon fiber epoxy composites at room temperature and high temperature", Adv. Compos. Hyb. Mater., 5(3), 1951-1965. https://doi.org/10.1007/s42114-022-00526-y
  83. Swaminathan, K. and Sangeetha, D.M. (2017), "Thermal analysis of FGM plates-A critical review of various modeling techniques and solution methods", Compos. Struct., 160, 43-60. https://doi.org/10.1016/j.compstruct.2016.10.047
  84. Ventsel, E., Krauthammer, T. and Carrera, E. (2002), "Thin plates and shells: theory, analysis, and applications", Appl. Mech. Rev., 55(4), B72-B73. https://doi.org/10.1201/9780203908723
  85. Vu-Bac, N., Lahmer, T., Zhuang, X., Nguyen-Thoi, T. and Rabczuk, T. (2016), "A software framework for probabilistic sensitivity analysis for computationally expensive models", Adv. Eng. Software, 100, 19-31. https://doi.org/10.1016/j.advengsoft.2016.06.005
  86. Wang, X., Li, C., Zhang, Y., Ali, H.M., Sharma, S., Li, R., Yang, M., Said, Z. and Liu, X. (2022), "Tribology of enhanced turning using biolubricants: A comparative assessment", Trib. Int., 107766. https://doi.org/10.1016/j.triboint.2022.107766
  87. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 275, 114395. https://doi.org/10.1016/j.compstruct.2021.114395
  88. Xu, W., Li, C.H., Zhang, Y., Ali, H.M., Sharma, S., Li, R., Yang, M., Gao, T., Liu, M., Wang, X. and Said, Z. (2022), "Electrostatic atomization minimum quantity lubrication machining: from mechanism to application", Int. J. Extrem. Manuf., 4, 042003. https://doi.org/10.1088/2631-7990/ac9652
  89. Yang, Y., Gong, Y., Li, C., Wen, X. and Sun, J. (2021), "Mechanical performance of 316L stainless steel by hybrid directed energy deposition and thermal milling process", J. Mater. Proc. Techn., 291, 117023. https://doi.org/10.1016/j.jmatprotec.2020.117023
  90. Yang, Y., Yang, M., Li, C., Li, R., Said, Z., Ali, H.M. and Sharma, S. (2022), "Machinability of ultrasonic vibration assisted microgrinding in biological bone using nanolubricant", Front. Mech. Eng., 18(1), p. 1. https://doi.org/10.1007/s11465-022-0717-z
  91. Yu, X., Maalla, A. and Moradi, Z. (2022), "Electroelastic highorder computational continuum strategy for critical voltage and frequency of piezoelectric NEMS via modified multi-physical couple stress theory", Mech. Syst. Signal. Process., 165, 108373. https://doi.org/10.1016/j.ymssp.2021.108373
  92. Yuhua, C., Yuqing, M., Weiwei, L. and Peng, H. (2017), "Investigation of welding crack in micro laser welded NiTiNb shape memory alloy and Ti6Al4V alloy dissimilar metals joints", Optics. Laser. Technol., 91, 197-202. https://doi.org/10.1016/j.optlastec.2016.12.028
  93. Zenkour, A.M. (2018), "Bending of thin rectangular plates with variable-thickness in a hygrothermal environment", Thin-Wall. Struct., 123, 333-340. https://doi.org/10.1016/j.tws.2017.11.038
  94. Zhang, J., Li, C., Zhang, Y., Yang, M., Jia, D., Liu, G., Hou, Y., Li, R., Zhang, N., Wu, Q. and Cao, H. (2018), "Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air", J. Clean. Prod., 193, 236-248. https://doi.org/10.1016/j.jclepro.2018.05.009
  95. Zhang, H., Li, L., Ma, W., Luo, Y., Li, Z. and Kuai, H. (2022a), "Effects of welding residual stresses on fatigue reliability assessment of a PC beam bridge with corrugated steel webs under dynamic vehicle loading", Structures, 45, 1561-1572. https://doi.org/10.1016/j.istruc.2022.09.094
  96. Zhang, H., Ouyang, Z., Li, L., Ma, W., Liu, Y., Chen, F. and Xiao, X. (2022b), "Numerical study on welding residual stress distribution of corrugated steel webs", Metals, 12(11), 1831. https://doi.org/10.3390/met12111831
  97. Zhuang, X., Guo, H., Alajlan, N., Zhu, H. and Rabczuk, T. (2021), "Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning", Eur. J. Mech.-A/Solids, 87, 104225. https://doi.org/10.1016/j.euromechsol.2021.104225