DOI QR코드

DOI QR Code

Nonlocal bending characteristics of nanoplate reinforced by functionally graded GPLs exposed to thermo-mechanical loads resting on the Pasternak's foundation

  • Masoud Kiani (Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan) ;
  • Mohammad Arefi (Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan)
  • Received : 2022.06.04
  • Accepted : 2023.02.15
  • Published : 2023.02.25

Abstract

The nonlocal strain gradient theory for the static bending analysis of graphene nanoplatelets (GPLs) reinforced the nanoplate is developed in this paper. The nanoplatelet is exposed to thermo-mechanical loads and is also supposed to stand on an elastic foundation. For computing impressive composite material characteristics, the Halpin-Tsai model is selected for various sectors. The various distributions are propounded including UD, FG-O, and FG-X. The represented equations are acquired based on the virtual work and sinusoidal shear and normal deformation theory (SSNDT). Navier's solution as the analytical method is applied to solve these equations. Furthermore, the effects of GPL weight fraction, temperature parameters, distribution pattern and parameters of the foundation are presented and discussed.

Keywords

References

  1. Al-Furjan, M.S.H., Habibi, M., Ni, J., Jung, D.W. and Tounsi, A. (2022a), "Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems", Eng. Comput., 38(5), 3725-3741. https://doi.org/10.1007/s00366-020-01200-x
  2. Al-Furjan, M.S.H., Habibi, M., Rahimi, A., Chen, G., Safarpour, H., Safarpour, M. and Tounsi, A. (2022b), "Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM", Eng. Comput., 38(1), 219-242. https://doi.org/10.1007/s00366-020-01144-2
  3. Al-Furjan, M.S.H., Habibi, M., Jung, D.W., Sadeghi, S., Safarpour, H., Tounsi, A. and Chen, G. (2022c), "A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel", Eng. Comput., 38, 1679-1696. https://doi.org/10.1007/s00366-020-01130-8
  4. Al-Furjan, M.S.H., Safarpour, H., Habibi, M., Safarpour, M. and Tounsi, A. (2022d), "A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method", Eng. Comput., 38, 801-818. https://doi.org/10.1007/s00366-020-01088-7
  5. Arani, A.G., Haghparast, E., Ghorbanpour Arani, A.H. (2016b), "Size-dependent vibration of double-bonded carbon nanotube-reinforced composite microtubes conveying fluid under longitudinal magnetic field", Polymer. Compos., 37(5), 1375-1383. https://doi-org.bbibliograficas.ucc.edu.co/10.1002/pc.23306
  6. Arefi, M. (2013), "Nonlinear thermoelastic analysis of thick-walled functionally graded piezoelectric cylinder", Acta. Mech., 224(11), 2771-2783. https://doi.org/10.1007/s00707-013-0888-0
  7. Arefi, M. (2014), "A complete set of equations for piezo-magnetoelastic analysis of a functionally graded thick shell of revolution", Latin. Am. J. Solids Struct., 11(11), 2073-2098. https://doi.org/10.1590/S1679-78252014001100009
  8. Arefi, M. and Nahas, I. (2014), "Nonlinear electro thermo elastic analysis of a thick spherical functionally graded piezoelectric shell", Compos. Struct., 118, 510-518. https://doi.org/10.1016/j.compstruct.2014.08.002
  9. Arefi, M. and Rahimi, G.H. (2010), "Thermo elastic analysis of a functionally graded cylinder under internal pressure using first order shear deformation theory", Sci. Res. Essays, 5(12), 1442-1454. https://doi.org/10.5897/SRE.9000953
  10. Arefi, M. and Rahimi, G.H. (2011), "Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart Struct. Syst., Int. J., 8(5), 433-447. https://doi.org/10.12989/sss.2011.8.5.433
  11. Arefi, M. and Rahimi, G.H. (2012a), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart Struct. Syst., Int. J., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127
  12. Arefi, M. and Rahimi, G.H. (2012b), "Comprehensive thermoelastic analysis of a functionally graded cylinder with different boundary conditions under internal pressure using first order shear deformation theory", Mechanika, 18(1), 5-13. https://doi.org/10.5755/j01.mech.18.1.1273
  13. Arefi, M. and Rahimi, G.H. (2012c), "Three-dimensional multi-field equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity", Acta. Mech., 223(1), 63-79. https://doi.org/10.1007/s00707-011-0536-5
  14. Arefi, M. and Rahimi, G.H. (2014), "Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder", Smart Struct. Syst., Int. J., 13(1), 1-24. https://doi.org/10.12989/sss.2014.13.1.001
  15. Arefi, M. and Zenkour, A.M. (2017a), "Nonlocal electro-thermo-mechanical analysis of a sandwich nanoplate containing a Kelvin-Voigt viscoelastic nanoplate and two piezoelectric layers", Acta. Mech., 228(2), 475-493. https://doi.org/10.1007/s00707-016-1716-0
  16. Arefi, M. and Zenkour, A.M. (2017b), "Transient analysis of a three-layer microbeam subjected to electric potential", Int. J. Smart. Nano. Mater., 8(1), 20-40. https://doi.org/10.1080/19475411.2017.1292967
  17. Arefi, M. and Zenkour, A.M. (2018), "Size-dependent electro-elastic analysis of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory", J. Intel. Mater. Syst. Struct., 29(7), 1394-1406. https://doi.org/10.1177/1045389X17733333
  18. Arefi, M. and Zenkour, A.M. (2019), "Effect of thermo-magneto-electro-mechanical fields on the bending behaviors of a three-layered nanoplate based on sinusoidal shear-deformation plate theory", J. Sandw. Struct. Mater., 21(2), 639-669. https://doi.org/10.1177/1099636217697497
  19. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2011), "Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material", Int. J. Phys. Sci., 6(27), 6315-6322. https://doi.org/10.5897/IJPS10.597
  20. Arefi, M., Nasr, M. and Loghman, A. (2018a), "Creep analysis of the FG cylinders: Time-dependent non-axisymmetric behavior", Steel Compos. Struct., Int. J., 28(3), 331-347. https://doi.org/10.12989/scs.2018.28.3.331
  21. Arefi, M., Mohammadi, M., Tabatabaeian, A., Dimitri, R. and Tornabene, F. (2018b), "Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels", Steel Compos. Struct., Int. J., 27(4), 525-536. https://doi.org/10.12989/scs.2018.27.4.525
  22. Arefi, M., Bidgoli, E.M.-R. and Rabczuk, T. (2019a), "Thermomechanical buckling behavior of FG GNP reinforced micro plate based on MSGT", Thin-Wall. Struct., 142, 444-459. https://doi.org/10.1016/j.tws.2019.04.054
  23. Arefi, M., Kiani, M. and Rabczuk, T. (2019b), "Application of nonlocal strain gradient theory to size dependent bending analysis of a sandwich porous nanoplate integrated with piezomagnetic face-sheets", Compos. Part B: Eng., 168, 320-333. https://doi.org/10.1016/j.compositesb.2019.02.057
  24. Arefi, M., Bidgoli, E.M.R., Dimitri, R., Tornabene, F. and Reddy, J.N. (2019c), "Size-dependent free vibrations of FG polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on Pasternak foundations", Appl. Sci., 9(8), 1580. https://doi.org/10.3390/app9081580
  25. Arefi, M., Kiani, M. and Zenkour, A.M. (2020), "Size-dependent free vibration analysis of a three-layered exponentially graded nano-/micro-plate with piezomagnetic face sheets resting on Pasternak's foundation via MCST", J. Sandw. Struct. Mater., 22(1), 55-86. https://doi.org/10.1177/1099636217734279
  26. Bai, Y., Nardi, D.C., Zhou, X., Picon, R.A. and Florez-Lopez, J. (2021), "A new comprehensive model of damage for flexural subassemblies prone to fatigue", Comput. Struct., 256, 106639. https://doi.org/10.1016/j.compstruc.2021.106639
  27. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F. and Lau, C.N. (2008), "Superior thermal conductivity of single-layer graphene", Nano Letters, 8(3), 902-907. https://doi.org/10.1021/nl0731872
  28. Bendenia, N., Zidour, M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Bedia, E.A., Mahmoud, S.R. and Tounsi, A. (2020), "Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation", Comput. Concrete, Int. J., 26(3), 213-226. https://doi.org/10.12989/cac.2020.26.3.213
  29. Bidgoli, M.R.E. and Arefi, M. (2021), "Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation", J. Sandw. Struct. Mater., 23(2), 436-472. https://doi.org/10.1177/1099636219839302
  30. Cataldi, P., Athanassiou, A. and Bayer, I.S. (2018), "Graphene nanoplatelets-based advanced materials and recent progress in sustainable applications", Appl. Sci., 8(9), 1438. https://doi.org/10.3390/app8091438
  31. Chen, W., Fan, W., Wang, Q., Yu, X., Luo, Y., Wang, W., Lei, R. and Li, Y. (2022), "A nano-micro structure engendered abrasion resistant, superhydrophobic, wearable triboelectric yarn for self-powered sensing", Nano Energy, 10, 107769. https://doi.org/10.1016/j.nanoen.2022.107769
  32. Cui, X., Li, C., Zhang, Y., Ding, W., An, Q., Liu, B., Li, H.N., Said, Z., Sharma, S., Li, R. and Debnath, S. (2022), "A comparative assessment of force, temperature and wheel wear in sustainable grinding aerospace alloy using bio-lubricant", Front. Mech. Eng., 18(1), p. 3. https://doi.org/10.1007/s11465-022-0719-x
  33. Cuong-Le, T., Nguyen, K.D., Le-Minh, H., Phan-Vu, P., Nguyen-Trong, P. and Tounsi, A. (2022), "Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory", Adv. Nano Res., Int. J., 12(5), 441-455. https://doi.org/10.12989/anr.2022.12.5.441
  34. Dang, Z.-M., Yuan, J.-K., Zha, J.-W., Zhou, T., Li, S.-T. and Hu, G.-H. (2012), "Fundamentals, processes and applications of high-permittivity polymer-matrix composites", Progress Mater. Sci., 57(4), 660-723. https://doi.org/10.1016/j.pmatsci.2011.08.001
  35. Das, A., Kasaliwal, G.R., Jurk, R., Boldt, R., Fischer, D., Stockelhuber, K.W. and Heinrich, G. (2012), "Rubber composites based on graphene nanoplatelets, expanded graphite, carbon nanotubes and their combination: A comparative study", Compos. Sci. Technol., 72(16), 1961-1967. https://doi.org/10.1016/j.compscitech.2012.09.005
  36. Duan, Z.J., Li, C.H., Zhang, Y.B., Dong, L., Ba, X.F., Yang, M., Jia, D.Z., Li, R., Cao, H.J. and Xu, X.F. (2021), "Milling surface roughness for 7050 aluminum alloy cavity influenced by nozzle position of nanofluid minimum quantity lubrication", Chin. J. Aeronaut., 34(6), 33-53. https://doi.org/10.1016/j.cja.2020.04.029
  37. Duan, Z., Li, C., Zhang, Y., Yang, M., Gao, T., Liu, X., Li, R., Said, Z., Debnath, S. and Sharma, S. (2022), "Mechanical behavior and Semiempirical force model of aerospace aluminum alloy milling using nano biological lubricant", Front. Mech. Eng., 18(3), p. 4. https://doi.org/10.1007/s11465-022-0720-4
  38. Fahsi, A., Tounsi, A., Hebali, H., Chikh, A., Adda Bedia, E.A. and Mahmoud, S.R. (2017), "A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates", Geomech. Eng., Int. J., 13(3), 385-410. https://doi.org/10.12989/gae.2017.13.3.385
  39. Fan, W., Zhang, G., Zhang, X., Dong, K., Liang, X., Chen, W., Yu, L. and Zhang, Y. (2022), "Superior unidirectional water transport and mechanically stable 3D orthogonal woven fabric for human body moisture and thermal management", Small, 18(10), 2107150. https://doi.org/10.1002/smll.202107150
  40. Fan, W., Zhang, C., Liu, Y., Wang, S., Dong, K., Li, Y., Wu, F., Liang, J., Wang, C. and Zhang, Y. (2023a), "An ultra-thin piezoelectric nanogenerator with breathable, superhydrophobic, and antibacterial properties for human motion monitoring". Nano Res., 1-9. https://doi.org/10.1007/s12274-023-5413-8
  41. Fan, W., Zhang, Y., Sun, Y., Wang, S., Zhang, C., Yu, X., Wang, W. and Dong, K. (2023b), "Durable antibacterial and temperature regulated core-spun yarns for textile health and comfort applications", Chem. Eng. J., 455, 140917. https://doi.org/10.1016/j.cej.2022.140917
  42. Feng, C., Kitipornchai, S. and Yang, J. (2017a), "Nonlinear bending of polymer nanocomposite beams reinforced with nonuniformly distributed graphene platelets (GPLs)", Compos. Part B: Eng., 110, 132-140. https://doi.org/10.1016/j.compositesb.2016.11.024
  43. Feng, C., Kitipornchai, S. and Yang, J. (2017b), "Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs)", Eng. Struct., 140, 110-119. https://doi.org/10.1016/j.compositesb.2016.11.024
  44. Fu, Q., Gu, M., Yuan, J. and Lin, Y. (2022), "Experimental study on vibration velocity of piled raft supported embankment and foundation for ballastless high speed railway", Buildings, 12(11), 1982. https://doi.org/10.3390/buildings12111982
  45. Gao, T., Zhang, Y., Li, C., Wang, Y., Chen, Y., An, Q., Zhang, S., Li, H.N., Cao, H., Ali, H.M. and Zhou, Z. (2022), "Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies", Front. Mech. Eng., 17(2), 24. https://doi.org/10.1007/s11465-022-0680-8
  46. Ghorbanpour-Arani, A.H., Rastgoo, A., Sharafi, M.M., Kolahchi, R. and Ghorbanpour Arani, A. (2016a), "Nonlocal viscoelasticity based vibration of double viscoelastic piezoelectric nanobeam systems", Meccanica, 51, 25-40. https://doi-org.bbibliograficas.ucc.edu.co/10.1007/s11012-014-9991-0
  47. Ghosh, S., Bao, W., Nika, D.L., Subrina, S., Pokatilov, E.P., Lau, C.N. and Balandin, A.A. (2010), "Dimensional crossover of thermal transport in few-layer graphene", Nature Mater., 9(7), 555-558. https://doi.org/10.1038/nmat2753
  48. Huang, X., Qi, X., Boey, F. and Zhang, H. (2012), "Graphenebased composites", Chem. Soc. Rev., 41(2), 666-686. https://doi.org/10.1039/C1CS15078B
  49. Huang, Y., Karami, B., Shahsavari, D. and Tounsi, A. (2021), "Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels", Archiv. Civ. Mech. Eng., 21, 139. https://doi.org/10.1007/s43452-021-00291-7
  50. Hussain, M. and Selmi, A. (2020), "Effect of Pasternak foundation: Structural modal identification for vibration of FG shell", Adv. Concrete Constr., Int. J., 9(6), 569-576. https://doi.org/10.12989/acc.2020.9.6.569
  51. Kang, J., Liu, T., Lu, Y., Lu, L., Dong, K., Wang, S., Li, B., Yao, Y., Bai, Y. and Fan, W. (2022), "Polyvinylidene fluoride piezoelectric yarn for real-time damage monitoring of advanced 3D textile composites", Compos. Part B.: Eng., 245, 110229. https://doi.org/10.1016/j.compositesb.2022.110229
  52. Kholdi, M., Rahimi, G., Loghman, A., Ashrafi, H. and Arefi, M. (2022), "Analysis of thick-walled spherical shells subjected to various temperature gradients: thermo-elasto-plastic and residual stress studies", Int. J. Appl. Mech., 13(9), 2150105. https://doi.org/10.1142/S1758825121501052
  53. Kumar, Y., Gupta, A. and Tounsi, A. (2021), "Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model", Adv. Nano. Res., Int. J., 11(1), 1-17. https://doi.org/10.12989/anr.2021.11.1.001
  54. Lee, C., Wei, X., Kysar, J.W. and Hone, J. (2008), "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Science, 321(5887), 385-388. https://doi.org/10.1126/science.1157996
  55. Li, S., Wang, F., Wang, Q., Ouyang, L., Chen, X. and Li, J. (2022a), "Numerical Modeling of Branching-Streamer Propagation in Ester-Based Insulating Oil under Positive Lightning Impulse Voltage: Effects from Needle Curvature Radius", IEEE Trans. Dielec. Elec. Insul., 30(1), 139-147 https://doi.org/10.1109/TDEI.2022.3218490
  56. Li, H., Zhang, Y., Li, C., Zhou, Z., Nie, X., Chen, Y., Cao, H., Liu, B., Zhang, N., Said, Z. and Debnath, S. (2022b), "Cutting fluid corrosion inhibitors from inorganic to organic: Progress and applications", Korean J. Chem. Eng., 39(5), 1107-1134. https://doi.org/10.1007/s11814-021-1057-0
  57. Li, Z., Zhang, Q., Shen, H., Xiao, X., Kuai, H. and Zheng, J. (2023), "Buckling performance of the encased functionally graded porous composite liner with polyhedral shapes reinforced by graphene platelets under external pressure", Thin-Wall. Struct., 183, 110370. https://doi.org/10.1016/j.tws.2022.110370
  58. Liang, J., Wang, Y., Huang, Y., Ma, Y., Liu, Z., Cai, J., Zhang, C., Gao, H. and Chen, Y. (2008), "Electromagnetic interference shielding of graphene/epoxy composites", Carbon, 47, 922-925. https://doi.org/10.1016/j.carbon.2008.12.038
  59. Liu, C., Zhao, Y., Wang, Y., Zhang, T. and Jia, H. (2021), "Hybrid dynamic modeling and analysis of high-speed thin-rimmed gears", ASME. J. Mech. Des., 143(12), 123401. https://doi.org/10.1115/1.4051137
  60. Liu, M., Li, C., Zhang, Y., Yang, M., Gao, T., Cui, X., Wang, X., Xu, W., Zhou, Z., Liu, B., Ssaid, J., Li, R. and Sharma, S. (2022), "Analysis of grinding mechanics and improved grinding force model based on randomized grain geometric characteristics", Chin. J. Aeronaut. https://doi.org/10.1016/j.cja.2022.11.005
  61. Luo, Y., Miao, Y., Wang, H., Dong, K., Hou, L., Xu, Y., Chen, W., Zhang, Y., Zhang, Y. and Fan, W. (2022), "Laser-induced Janus graphene/poly (p-phenylene benzobisoxazole) fabrics with intrinsic flame retardancy as flexible sensors and breathable electrodes for fire-fighting field", Nano. Res., 1-9. https://doi.org/10.1007/s12274-023-5382-y
  62. Luo, C., Wang, L., Xie, Y. and Chen, B. (2023), "A new conjugate gradient method for moving force identification of vehicle-bridge system", J. Vib. Eng. Techn. https://doi.org/10.1007/s42417-022-00824-1
  63. Mirzaei, M.M.H., Arefi, M. and Loghman, A. (2019a), "Creep analysis of a rotating functionally graded simple blade: steady state analysis", Steel Compos. Struct., Int. J., 33(3), 463-472. https://doi.org/10.12989/scs.2019.33.3.463
  64. Mirzaei, M.M.H., Loghman, A. and Arefi, M. (2019b), "Time-dependent creep analysis of a functionally graded beam with trapezoidal cross section using first-order shear deformation theory", Steel Compos. Struct., Int. J., 30(6), 567-576. https://doi.org/10.12989/scs.2019.30.6.567
  65. Mortazavi, B., Benzerara, O., Meyer, H., Bardon, J. and Ahzi, S. (2013), "Combined molecular dynamics-finite element multiscale modeling of thermal conduction in graphene epoxy nanocomposites", Carbon, 60, 356-365. https://doi.org/10.1016/j.carbon.2013.04.048
  66. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.E., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004), "Electric field effect in atomically thin carbon films", Science, 306(5696), 666-669. https://doi.org/10.1126/science.110289
  67. Pan, X., Wu, W., Yu, X., Lu, L., Guo, C. and Zhao, Y. (2023), "Typical electrical, mechanical, electromechanical characteristics of copper-encapsulated REBCO tapes after processing in temperature under 250℃", Superconduc. Sci. Techn., 36(3). https://doi.org/10.1088/1361-6668/acb740
  68. Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2011), "Application and analysis of functionally graded piezoelectrical rotating cylinder as mechanical sensor subjected to pressure and thermal loads", Appl. Math. Mech. (Eng. Ed.), 32(8), 997-1008. https://doi.org/10.1007/s10483-011-1475-6
  69. Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2012), "Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear deformation theory and energy method", Mechanika, 18(3), 292-300. https://doi.org/10.5755/j01.mech.18.3.1875
  70. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano, 3(12), 3884-3890. https://doi.org/10.1021/nn9010472
  71. Rashad, M., Pan, F., Tang, A., Asif, M., She, J., Gou, J., Mao, J. and Hu, H. (2015), "Development of magnesium-graphene nanoplatelets composite", J. Compos. Mater., 49(3), 285-293. https://doi.org/10.1177/0021998313518360
  72. Reddy, R.M.R., Karunasena, W. and Lokuge, W. (2018), "Free vibration of functionally graded-GPL reinforced composite plates with different boundary conditions", Aer. Sci. Technol., 78, 147-156. https://doi.org/10.1016/j.ast.2018.04.019
  73. Sae-Long, W., Limkatanyu, S., Hansapinyo, C., Prachasaree, W., Rungamornrat, J. and Kwon, M. (2021), "Nonlinear flexibility-based beam element on Winkler-Pasternak foundation", Geomech. Eng., Int. J., 24(4), 371-388. https://doi.org/10.12989/gae.2021.24.4.371
  74. Sahmani, S. and Fattahi, A.M. (2018), "Development of efficient size-dependent plate models for axial buckling of single-layered graphene nanosheets using molecular dynamics simulation", Microsyst. Technol., 24(2), 1265-1277. https://doi.org/10.1007/s00542-017-3497-3
  75. Selmi, A. (2021), "Free vibration of bi-dimensional functionally graded simply supported beams", Adv. Concrete Constr., Int. J., 12(3), 195-205. https://doi.org/10.12989/acc.2021.12.3.195
  76. Shi, J., Zhao, B., He, T., Tu, L., Lu, X. and Xu, H. (2023), "Tribology and dynamic characteristics of textured journal-thrust coupled bearing considering thermal and pressure coupled effects", Trib. Int., 180, 108292. https://doi.org/10.1016/j.triboint.2023.108292
  77. Song, M., Kitipornchai, S. and Yang, J. (2017a), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070
  78. Song, M., Yang, J., Kitipornchai, S. and Zhu, W. (2017b), "Buckling and postbuckling of biaxially compressed functionally graded multilayer graphene nanoplatelet-reinforced polymer composite plates", Int. J. Mech. Sci., 131, 345-355. https://doi.org/10.1016/j.ijmecsci.2017.07.017
  79. Sun, Y., Fan, W., Song, C., Gao, X., Liu, T., Song, W., Wang, S., Zhou, R., Li, G. and Li, S. (2022), "Effects of stitch yarns on interlaminar shear behavior of three-dimensional stitched carbon fiber epoxy composites at room temperature and high temperature", Adv. Compos. Hybr. Mater., 5(3), 1951-1965. https://doi.org/10.1007/s42114-022-00526-y
  80. Tang, L., Zhang, Y., Li, C., Zhou, Z., Nie, X., Chen, Y., Cao, H., Liu, B., Zhang, N., Said, Z. and Debnath, S. (2022), "Biological stability of water-based cutting fluids: progress and application", Chin. J. Mech. Eng., 35(1), 1-24. https://doi.org/10.1186/s10033-021-00667-z
  81. Tian, L.M., Li, M.H., Li, L., Li, D.Y. and Bai, C. (2023), "Novel joint for improving the collapse resistance of steel frame structures in column-loss scenarios", Thin-Wall. Struct., 182, 110219. https://doi.org/10.1016/j.tws.2022.110219
  82. Van Vinh, P. and Tounsi, A. (2022), "Free vibration analysis of functionally graded doubly curved nanoshells using nonlocal first-order shear deformation theory with variable nonlocal parameters", Thin-Wall. Struct., 174, 109084. https://doi.org/10.1016/j.tws.2022.109084
  83. Wang, Y. and Chen, J. (2022), "Nonlinear free vibration of rotating functionally graded graphene platelets reinforced blades with variable cross-sections", Eng. Anal. Bound. Elem., 144, 262-278. https://doi.org/10.1016/j.enganabound.2022.08.032
  84. Wang, Y. and Zhang, W. (2022), "On the thermal buckling and postbuckling responses of temperature-dependent graphene platelets reinforced porous nanocomposite beams", Compos. Struct., 296, 115880. https://doi.org/10.1016/j.compstruct.2022.115880
  85. Wang, Y., Xie, K., Fu, T. and Shi, C. (2019), "Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses", Compos. Struct., 209, 928-939. https://doi.org/10.1016/j.compstruct.2018.11.014
  86. Wang, X., Wang, P., Jiang, W., Wu, F., Kiani, M. and Arefi, M. (2021a), "Mathematical and computer simulation for Electro-Magneto-Thermo-Elastic Buckling of the Porous Nano system", Struct. Eng. Mech., Int. J., 80(2), 231-242. https://doi.org/10.12989/sem.2021.80.2.231
  87. Wang, Y., Fu, T. and Zhang, W. (2021b), "An accurate size-dependent sinusoidal shear deformable framework for GNP-reinforced cylindrical panels: Applications to dynamic stability analysis", Thin-Wall. Struct., 160, 107400. https://doi.org/10.1016/j.tws.2020.107400
  88. Wang, Y., Ma, H., Xie, K., Fu, T., Chen, J. and Liu, Y. (2022a), "Nonlinear bending of a sandwich beam with metal foam and GPLRC face-sheets using Chebyshev-Ritz method: Effects of agglomeration and internal pore", Thin-Wall. Struct., 181, 110035. https://doi.org/10.1016/j.tws.2022.110035
  89. Wang, Y., Liu, H., Zhang, W. and Liu, Y. (2022b), "A size-dependent shear deformable computational framework for transient response of GNP-reinforced metal foam cylindrical shells subjected to localized impulsive loads", Appl. Math. Modell., 109, 578-598. https://doi.org/10.1016/j.apm.2022.05.018
  90. Williams, J.R., DiCarlo, L. and Marcus, C.M. (2007), "Quantum Hall effect in a gate-controlled pn junction of graphene", Science, 317(5838), 638-641. https://doi.org/10.1126/science.1144657
  91. Wu, H. and Drzal, L.T. (2012), "Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties", Carbon, 50(3), 1135-1145. https://doi.org/10.1016/j.carbon.2011.10.026
  92. Wu, H., Kitipornchai, S., Ke, L. and Yang, J. (2017), "Static analysis of functionally graded graphene nanocomposite beams under thermo-electro-mechanical loading", Proceedings of 8th International Conference on Computational Methods (ICCM2017).
  93. Wang, X., Li, C., Zhang, Y., Ali, H.M., Sharma, S., Li, R., Yang, M., Said, Z. and Liu, X. (2022a), "Tribology of enhanced turning using biolubricants: A comparative assessment", Trib. Int., 174, 107766. https://doi.org/10.1016/j.triboint.2022.107766
  94. Wang, X., Li, C., Zhang, Y., Said, Z., Debnath, S., Sharma, S., Yang, M. and Gao, T. (2022b), "Influence of texture shape and arrangement on nanofluid minimum quantity lubrication turning", Int. J. Adv. Manufact. Technol., 119(1-2), 631-646. https://doi.org/10.1007/s00170-021-08235-4
  95. Wang, J., Wang, N., Xu, D., Tang, L. and Sheng, B. (2023), "Flexible humidity sensors composed with electrodes of laser induced graphene and sputtered sensitive films derived from poly(ether-ether-ketone)", Sens. Actuat. B: Chem., 375, 132846. https://doi.org/10.1016/j.snb.2022.132846
  96. Xia, Y., Shi, M., Zhang, C., Wang, C., Sang, X., Liu, R., Zhao, P., An, G. and Fang, H. (2022), "Analysis of flexural failure mechanism of ultraviolet cured-in-place-pipe materials for buried pipelines rehabilitation based on curing temperature monitoring", Eng. Fail. Anal., 142, 106763. https://doi.org/10.1016/j.engfailanal.2022.106763
  97. Xiao, X., Zhang, Q., Zheng, J. and Li, Z. (2023), "Analytical model for the nonlinear buckling responses of the confined polyhedral FGP-GPLs lining subjected to crown point loading", Eng. Struct., 282, 115780. https://doi.org/10.1016/j.engstruct.2023.115780
  98. Xiao, X., Zhang, H., Li, Z. and Chen, F. (2022), "Effect of Temperature on the Fatigue Life Assessment of Suspension Bridge Steel Deck Welds under Dynamic Vehicle Loading", Math. Prob. Eng., 7034588. https://doi.org/10.1155/2022/7034588
  99. Xu, W., Li, C.H., Zhang, Y., Ali, H.M., Sharma, S., Li, R., Yang, M., Gao, T., Liu, M., Wang, X. and Said, Z. (2022), "Electrostatic atomization minimum quantity lubrication machining: from mechanism to application", Int. J. Extrem. Manuf., 4, 042003. https://doi.org/10.1088/2631-7990/ac9652
  100. Yan, Y. (2022), "Resonance frequency and stability of composite micro/nanoshell via deep neural network trained by adaptive momentum-based approach", Geomech. Eng., Int. J., 28(5), 477-491. https://doi.org/10.12989/gae.2022.28.5.477
  101. Yang, Y., Gong, Y., Li, C., Wen, X. and Sun, J. (2021), "Mechanical performance of 316 L stainless steel by hybrid directed energy deposition and thermal milling process", J. Mater. Proc. Technol., 291, 117023. https://doi.org/10.1016/j.jmatprotec.2020.117023
  102. Yang, Y., Yang, M., Li, C., Li, R., Said, Z., Ali, H.M. and Sharma, S. (2022), "Machinability of ultrasonic vibration assisted micro-grinding in biological bone using nanolubricant", Front. Mech. Eng., 18(1), p. 1. https://doi.org/10.1007/s11465-022-0717-z
  103. Zerrouki, R., Karas, A., Zidour, M., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Benrahou, K.H. and Mahmoud, S.R. (2021), "Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam", Struct. Eng. Mech., Int. J., 78(2), 117-124. https://doi.org/10.12989/sem.2021.78.2.117
  104. Zhang, Y., Liu, G., Ye, J. and Lin, Y. (2022), "Crushing and parametric studies of polygonal substructures based hierarchical cellular honeycombs with non-uniform wall thickness", Compos. Struct., 299, 116087. https://doi.org/10.1016/j.compstruct.2022.116087
  105. Zhao, Z., Feng, C., Wang, Y. and Yang, J. (2017), "Bending and vibration analysis of functionally graded trapezoidal nanocomposite plates reinforced with graphene nanoplatelets (GPLs)", Compos. Struct., 180, 799-808. https://doi.org/10.1016/j.compstruct.2017.08.044
  106. Zhou, X., Wang, Y. and Zhang, W. (2021), "Vibration and flutter characteristics of GPL-reinforced functionally graded porous cylindrical panels subjected to supersonic flow", Acta Astronautica, 183, 89-100. https://doi.org/10.1016/j.actaastro.2021.03.003