Acknowledgement
The research described in this paper was supported by the National Engineering College, Kovilpatti Tamilnadu and the Centre for Energy Research, Chennai Institute of Technology, Chennai.
References
- Al-Hadithi, A.I. and Hilal, N.N. (2016), "The possibility of enhancing some properties of self-compacting concrete by adding waste plastic fibers", J. Build. Eng., 8, 20-28. https://doi.org/10.1016/j.jobe.2016.06.011
- Al-Rawi, S. and Taysi, N. (2018), "Performance of self-compacting geopolymer concrete with and without GGBFS and steel fiber", Adv. Concrete Constr., Int. J., 6(4), 323-344. https://doi.org/10.12989/acc.2018.6.4.323
- Alberti, M.G., Enfedaque, A. and Galvez, J.C. (2014), "On the mechanical properties and fracture behavior of polyolefin fiber-reinforced self-compacting concrete", Constr. Build. Mater., 55, 274-288. https://doi.org/10.1016/j.conbuildmat.2014.01.024
- Apostolopoulou, M., Asteris, P.G., Armaghani, D.J., Douvika, M.G., Lourenco, P.B., Cavaleri, L., Bakolas, A. and Moropoulou, A. (2020), "Mapping and holistic design of natural hydraulic lime mortars", Cement Concrete Res., 136(December 2019), 106167. https://doi.org/10.1016/j.cemconres.2020.106167
- Armaghani, D.J., Mamou, A., Maraveas, C., Roussis, P.C., Siorikis, V.G., Skentou, A.D. and Asteris, P.G. (2021), "Predicting the unconfined compressive strength of granite using only two non-destructive test indexes", Geomech. Eng., Int. J., 25(4), 317-330. https://doi.org/10.12989/gae.2021.25.4.317
- Asteris, P.G. and Kolovos, K.G. (2019), "Self-compacting concrete strength prediction using surrogate models", Neural Comput. Applicat., 31(S1), 409-424. https://doi.org/10.1007/s00521-017-3007-7
- Asteris, P.G., Kolovos, K.G., Douvika, M.G. and Roinos, K. (2016), "Prediction of self-compacting concrete strength using artificial neural networks", Eur. J. Environ. Civil Eng., 20(sup1), s102-s122. https://doi.org/10.1080/19648189.2016.1246693
- Asteris, P.G., Argyropoulos, I., Cavaleri, L., Rodrigues, H., Varum, H., Thomas, J. and Lourenco, P.B. (2019), "Masonry Compressive Strength Prediction Using Artificial Neural Networks", In: Communications in Computer and Information Science (Vol. 962, pp. 200-224). https://doi.org/10.1007/978-3-030-12960-6_14
- Asteris, P.G., Skentou, A.D., Bardhan, A., Samui, P. and Pilakoutas, K. (2021), "Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models", Cement Concrete Res., 145(October 2020), 106449. https://doi.org/10.1016/j.cemconres.2021.106449
- Aydin, A.C. (2007), "Self compactability of high volume hybrid fiber reinforced concrete", Constr. Build. Mater., 21(6), 1149-1154. https://doi.org/10.1016/j.conbuildmat.2006.11.017
- Banyhussan, Q.S., Yildirim, G., Bayraktar, E., Demirhan, S. and Sahmaran, M. (2016), "Deflection-hardening hybrid fiber reinforced concrete: The effect of aggregate content", Constr. Build. Mater., 125, 41-52. https://doi.org/10.1016/j.conbuildmat.2016.08.020
- Bencardino, F., Rizzuti, L., Spadea, G. and Swamy, R.N. (2010), "Experimental evaluation of fiber reinforced concrete fracture properties", Compos. Part B: Eng., 41(1), 17-24. https://doi.org/10.1016/j.compositesb.2009.09.002
- Bhosale, A., Rasheed, M.A., Prakash, S.S. and Raju, G. (2019), "A study on the efficiency of steel vs. synthetic vs. hybrid fibers on fracture behavior of concrete in flexure using acoustic emission", Constr. Build. Mater., 199, 256-268. https://doi.org/10.1016/j.conbuildmat.2018.12.011
- Dawood, E.T. and Ramli, M. (2014), "Effects of the fibers on the properties of high strength flowing concrete", KSCE J. Civil Eng., 18(6), 1704-1710. https://doi.org/10.1007/s12205-014-0170-6
- Djelloul, O.K., Menadi, B., Wardeh, G. and Kenai, S. (2018), "Performance of self-compacting concrete made with coarse and fine recycled concrete aggregates and ground granulated blast-furnace slag", Adv. Concrete Constr., Int. J., 6(2), 103-121. https://doi.org/10.12989/acc.2018.6.2.103
- EFNARC (2005), "The European Guidelines for Self-Compacting Concrete", The European Guidelines for Self Compacting Concrete, May, 63.
- Faraj, R.H., Sherwani, A.F.H., Jafer, L.H. and Ibrahim, D.F. (2021), "Rheological behavior and fresh properties of self-compacting high strength concrete containing recycled PP particles with fly ash and silica fume blended", J. Build. Eng., 34, 101667. https://doi.org/10.1016/j.jobe.2020.101667
- Faraj, R.H., Mohammed, A.A., Mohammed, A., Omer, K.M. and Ahmed, H.U. (2022a), "Systematic multiscale models to predict the compressive strength of self-compacting concretes modified with nanosilica at different curing ages", Eng. Comput., 38(S3), 2365-2388. https://doi.org/10.1007/s00366-021-01385-9
- Faraj, R.H., Mohammed, A.A., Omer, K.M. and Ahmed, H.U. (2022b), "Soft computing techniques to predict the compressive strength of green self-compacting concrete incorporating recycled plastic aggregates and industrial waste ashes", Clean Technol. Environ. Policy, 24(7), 2253-2281. https://doi.org/10.1007/s10098-022-02318-w
- Farooq, F., Czarnecki, S., Niewiadomski, P., Aslam, F., Alabduljabbar, H., Ostrowski, K.A., Sliwa-Wieczorek, K., Nowobilski, T. and Malazdrewicz, S. (2021), "A comparative study for the prediction of the compressive strength of self-compacting concrete modified with fly ash", Materials, 14(17), 4934. https://doi.org/10.3390/ma14174934
- Gupta, T., Patel, K.A., Siddique, S., Sharma, R.K. and Chaudhary, S. (2019), "Prediction of mechanical properties of rubberised concrete exposed to elevated temperature using ANN", Measurement: J. Int. Measure. Confed., 147, 106870. https://doi.org/10.1016/j.measurement.2019.106870
- Halvaei, M., Jamshidi, M., Latifi, M. and Ejtemaei, M. (2020), "Effects of volume fraction and length of carbon short fibers on flexural properties of carbon textile reinforced engineered cementitious composites (ECCs); an experimental and computational study", Constr. Build. Mater., 245, 118394. https://doi.org/10.1016/j.conbuildmat.2020.118394
- Huseien, G.F. and Shah, K.W. (2020), "Durability and life cycle evaluation of self-compacting concrete containing fly ash as GBFS replacement with alkali activation", Constr. Build. Mater., 235, 117458. https://doi.org/10.1016/j.conbuildmat.2019.117458
- Kang, S.T., Lee, Y., Park, Y.D. and Kim, J.K. (2010), "Tensile fracture properties of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) with steel fiber", Compos. Struct., 92(1), 61-71. https://doi.org/10.1016/j.compstruct.2009.06.012
- Kang, M.C., Yoo, D.Y. and Gupta, R. (2021), "Machine learning-based prediction for compressive and flexural strengths of steel fiber-reinforced concrete", Constr. Build. Mater., 266, 121117. https://doi.org/10.1016/j.conbuildmat.2020.121117
- Khan, S.M., Malik, S.A., Gull, N., Saleemi, S., Islam, A. and Butt, M.T.Z. (2019), "Fabrication and modelling of the macro-mechanical properties of cross-ply laminated fibre-reinforced polymer composites using artificial neural network", Adv. Compos. Mater., 28(4), 409-423. https://doi.org/10.1080/09243046.2019.1573448
- Labib, W.A. (2020), "Evaluation of hybrid fibre-reinforced concrete slabs in terms of punching shear", Constr. Build. Mater., 260, 119763. https://doi.org/10.1016/j.conbuildmat.2020.119763
- Le, T.-T., Asteris, P.G. and Lemonis, M.E. (2021), "Prediction of axial load capacity of rectangular concrete-filled steel tube columns using machine learning techniques", Eng. Comput., 0123456789. https://doi.org/10.1007/s00366-021-01461-0
- Li, L.G., Zhao, Z.W., Zhu, J., Kwan, A.K.H. and Zeng, K.L. (2018), "Combined effects of water film thickness and polypropylene fibre length on fresh properties of mortar", Constr. Build. Mater., 174, 586-593. https://doi.org/10.1016/j.conbuildmat.2018.03.259
- Mahmood, W., Salih Mohammed, A., Asteris, P.G. and Ahmed, H. (2022), "Testing and Modeling the Gradually Applying Compressive Stress to Measuring the Strain of Self-Compacted Cement Paste Using Vipulanandan p-q Model", J. Test. Eval., 50(3), 20210219. https://doi.org/10.1520/JTE20210219
- Mashhadban, H., Kutanaei, S.S. and Sayarinejad, M.A. (2016), "Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network", Constr. Build. Mater., 119, 277-287. https://doi.org/10.1016/j.conbuildmat.2016.05.034
- Mazaheripour, H., Ghanbarpour, S., Mirmoradi, S.H. and Hosseinpour, I. (2011), "The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete", Constr. Build. Mater., 25(1), 351-358. https://doi.org/10.1016/j.conbuildmat.2010.06.018
- Mihashi, H., Nomura, N. and Niiseki, S. (1991), "Influence of aggregate size on fracture process zone of concrete detected with three-dimensional acoustic emission technique", Cement Concrete Res., 21(5), 737-744. https://doi.org/10.1016/0008-8846(91)90168-H
- Oghabi, M. and Khoshvatan, M. (2020), "The Laboratory Experiment of the Effect of Quantity and Length of Plastic Fiber on Compressive Strength and Tensile Resistance of Self-Compacting Concrete", KSCE J. Civil Eng., 24(8), 2477-2484. https://doi.org/10.1007/s12205-020-1578-9
- Owsiak, Z. and Grzmil, W. (2015), "The evaluation of the influence of mineral additives on the durability of selfcompacting concretes", KSCE J. Civil Eng., 19(4), 1002-1008. https://doi.org/10.1007/s12205-013-0336-7
- Pilakoutas, K., Neocleous, K. and Tlemat, H. (2004), "Reuse of tyre steel fibres as concrete reinforcement", Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 157(3), 131-138. https://doi.org/10.1680/ensu.2004.157.3.131
- Ramanathan, P., Baskar, I., Muthupriya, P. and Venkatasubramani, R. (2013), "Performance of self-compacting concrete containing different mineral admixtures", KSCE J. Civil Eng., 17(2), 465-472. https://doi.org/10.1007/s12205-013-1882-8
- Ramkumar, K.B., Kannan Rajkumar, P.R., Noor Ahmmad, S. and Jegan, M. (2020), "A review on performance of self-compacting concrete-use of mineral admixtures and steel fibres with artificial neural network application", Constr. Build. Mater., 261, 120215. https://doi.org/10.1016/j.conbuildmat.2020.120215
- Ray, S., Haque, M., Ahmed, T. and Nahin, T.T. (2021), "Comparison of artificial neural network (ANN) and response surface methodology (RSM) in predicting the compressive and splitting tensile strength of concrete prepared with glass waste and tin (Sn) can fiber", J. King Saud Univ. - Eng. Sci. https://doi.org/10.1016/j.jksues.2021.03.006
- Senthil, K., Satyanarayanan, K.S. and Rupali, S. (2016), "Energy absorption of fibrous self compacting reinforced concrete system", Adv. Concrete Constr., Int. J., 4(1), 37-47. https://doi.org/10.12989/acc.2016.4.1.037
- Sonebi, M., Grunewald, S., Cevik, A. and Walraven, J. (2016), "Modelling fresh properties of self-compacting concrete using neural network technique", Comput. Concrete, Int. J., 18(4), 903-921. https://doi.org/10.12989/cac.2016.18.4.903
- Song, P.S., Hwang, S. and Sheu, B.C. (2005), "Strength properties of nylon- and polypropylene-fiber-reinforced concretes", Cement Concrete Res., 35(8), 1546-1550. https://doi.org/10.1016/j.cemconres.2004.06.033
- Su, N., Hsu, K.C. and Chai, H.W. (2001), "A simple mix design method for self-compacting concrete", Cement Concrete Res., 31(12), 1799-1807. https://doi.org/10.1016/S0008-8846(01)00566-X
- Tabatabaei Mirhosseini, R. and Shamsadinei, M. (2019), "Simulation of self-compacting concrete properties containing silica quicksand using ANN models", J. Architect. Environ. Struct. Eng. Res., 1(1), 1-9. https://doi.org/10.30564/jaeser.v1i1.158
- Ullah Khan, S. and Ayub, T. (2020), "Flexure and shear behaviour of self-compacting reinforced concrete beams with polyethylene terephthalate fibres and strips", Structures, 25(February), 200-211. https://doi.org/10.1016/j.istruc.2020.02.023
- Wang, J., Dai, Q., Si, R., Ma, Y. and Guo, S. (2020), "Fresh and mechanical performance and freeze-thaw durability of steel fiber-reinforced rubber self-compacting concrete (SRSCC)", J. Cleaner Product., 277, 123180. https://doi.org/10.1016/j.jclepro.2020.123180
- Wu, H., Lin, X. and Zhou, A. (2020), "A review of mechanical properties of fibre reinforced concrete at elevated temperatures", Cement Concrete Res., 135(May), 106117. https://doi.org/10.1016/j.cemconres.2020.106117
- Zaroudi, M., Madandoust, R. and Aghaee, K. (2020), "Fresh and hardened properties of an eco-friendly fiber reinforced self-consolidated concrete composed of polyolefin fiber and natural zeolite", Constr. Build. Mater., 241, 118064. https://doi.org/10.1016/j.conbuildmat.2020.118064
- Zerbino, R., Tobes, J.M., Bossio, M.E. and Giaccio, G. (2012), "On the orientation of fibres in structural members fabricated with self compacting fibre reinforced concrete", Cement Concrete Compos., 34(2), 191-200. https://doi.org/10.1016/j.cemconcomp.2011.09.005
- Zeyad, A.M. (2020), "Effect of fibers types on fresh properties and flexural toughness of self-compacting concrete", J. Mater. Res. Technol., 9(3), 4147-4158. https://doi.org/10.1016/j.jmrt.2020.02.042