DOI QR코드

DOI QR Code

Study on self-compacting polyester fiber reinforced concrete and strength prediction using ANN

  • Chella Gifta Christopher (Department of Civil Engineering, National Engineering College) ;
  • Partheeban Pachaivannan (Department of Civil Engineering, Chennai Institute of Technology) ;
  • P. Navin Elamparithi (Department of Computer Science and Engineering, National Institute of Technology)
  • Received : 2021.09.03
  • Accepted : 2023.02.12
  • Published : 2023.02.25

Abstract

The characteristics of self-compacting concrete (SCC) made with fly ash and reinforced with polyester fibers were investigated in this research. Polyester fibers of 12 mm long and 15 micrometer diameters were utilized in M40 grade SCC mixtures at five different volume fractions 0.025%, 0.05%, 0.075%, 0.1%, 0.3% as a fiber reinforcement. To understand the influence of polyester fibers on passing ability, flowability, segregate resistance the J ring, L box, V funnel, slump flow and U box tests were performed. Polyester fibers have a direct influence, with a maximum of 0.075% polyester fibers producing excellent characteristics. ANN models were constructed using the testing data as inputs to anticipate the fresh and hardened characteristics as targeted outputs. The research revealed that R2 values ranging from 0.900 to 0.997 appears to be a good correlation. The performance of ANN models and regression models for predicting the new characteristics of SCC is also evaluated.

Keywords

Acknowledgement

The research described in this paper was supported by the National Engineering College, Kovilpatti Tamilnadu and the Centre for Energy Research, Chennai Institute of Technology, Chennai.

References

  1. Al-Hadithi, A.I. and Hilal, N.N. (2016), "The possibility of enhancing some properties of self-compacting concrete by adding waste plastic fibers", J. Build. Eng., 8, 20-28. https://doi.org/10.1016/j.jobe.2016.06.011
  2. Al-Rawi, S. and Taysi, N. (2018), "Performance of self-compacting geopolymer concrete with and without GGBFS and steel fiber", Adv. Concrete Constr., Int. J., 6(4), 323-344. https://doi.org/10.12989/acc.2018.6.4.323
  3. Alberti, M.G., Enfedaque, A. and Galvez, J.C. (2014), "On the mechanical properties and fracture behavior of polyolefin fiber-reinforced self-compacting concrete", Constr. Build. Mater., 55, 274-288. https://doi.org/10.1016/j.conbuildmat.2014.01.024
  4. Apostolopoulou, M., Asteris, P.G., Armaghani, D.J., Douvika, M.G., Lourenco, P.B., Cavaleri, L., Bakolas, A. and Moropoulou, A. (2020), "Mapping and holistic design of natural hydraulic lime mortars", Cement Concrete Res., 136(December 2019), 106167. https://doi.org/10.1016/j.cemconres.2020.106167
  5. Armaghani, D.J., Mamou, A., Maraveas, C., Roussis, P.C., Siorikis, V.G., Skentou, A.D. and Asteris, P.G. (2021), "Predicting the unconfined compressive strength of granite using only two non-destructive test indexes", Geomech. Eng., Int. J., 25(4), 317-330. https://doi.org/10.12989/gae.2021.25.4.317
  6. Asteris, P.G. and Kolovos, K.G. (2019), "Self-compacting concrete strength prediction using surrogate models", Neural Comput. Applicat., 31(S1), 409-424. https://doi.org/10.1007/s00521-017-3007-7
  7. Asteris, P.G., Kolovos, K.G., Douvika, M.G. and Roinos, K. (2016), "Prediction of self-compacting concrete strength using artificial neural networks", Eur. J. Environ. Civil Eng., 20(sup1), s102-s122. https://doi.org/10.1080/19648189.2016.1246693
  8. Asteris, P.G., Argyropoulos, I., Cavaleri, L., Rodrigues, H., Varum, H., Thomas, J. and Lourenco, P.B. (2019), "Masonry Compressive Strength Prediction Using Artificial Neural Networks", In: Communications in Computer and Information Science (Vol. 962, pp. 200-224). https://doi.org/10.1007/978-3-030-12960-6_14
  9. Asteris, P.G., Skentou, A.D., Bardhan, A., Samui, P. and Pilakoutas, K. (2021), "Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models", Cement Concrete Res., 145(October 2020), 106449. https://doi.org/10.1016/j.cemconres.2021.106449
  10. Aydin, A.C. (2007), "Self compactability of high volume hybrid fiber reinforced concrete", Constr. Build. Mater., 21(6), 1149-1154. https://doi.org/10.1016/j.conbuildmat.2006.11.017
  11. Banyhussan, Q.S., Yildirim, G., Bayraktar, E., Demirhan, S. and Sahmaran, M. (2016), "Deflection-hardening hybrid fiber reinforced concrete: The effect of aggregate content", Constr. Build. Mater., 125, 41-52. https://doi.org/10.1016/j.conbuildmat.2016.08.020
  12. Bencardino, F., Rizzuti, L., Spadea, G. and Swamy, R.N. (2010), "Experimental evaluation of fiber reinforced concrete fracture properties", Compos. Part B: Eng., 41(1), 17-24. https://doi.org/10.1016/j.compositesb.2009.09.002
  13. Bhosale, A., Rasheed, M.A., Prakash, S.S. and Raju, G. (2019), "A study on the efficiency of steel vs. synthetic vs. hybrid fibers on fracture behavior of concrete in flexure using acoustic emission", Constr. Build. Mater., 199, 256-268. https://doi.org/10.1016/j.conbuildmat.2018.12.011
  14. Dawood, E.T. and Ramli, M. (2014), "Effects of the fibers on the properties of high strength flowing concrete", KSCE J. Civil Eng., 18(6), 1704-1710. https://doi.org/10.1007/s12205-014-0170-6
  15. Djelloul, O.K., Menadi, B., Wardeh, G. and Kenai, S. (2018), "Performance of self-compacting concrete made with coarse and fine recycled concrete aggregates and ground granulated blast-furnace slag", Adv. Concrete Constr., Int. J., 6(2), 103-121. https://doi.org/10.12989/acc.2018.6.2.103
  16. EFNARC (2005), "The European Guidelines for Self-Compacting Concrete", The European Guidelines for Self Compacting Concrete, May, 63.
  17. Faraj, R.H., Sherwani, A.F.H., Jafer, L.H. and Ibrahim, D.F. (2021), "Rheological behavior and fresh properties of self-compacting high strength concrete containing recycled PP particles with fly ash and silica fume blended", J. Build. Eng., 34, 101667. https://doi.org/10.1016/j.jobe.2020.101667
  18. Faraj, R.H., Mohammed, A.A., Mohammed, A., Omer, K.M. and Ahmed, H.U. (2022a), "Systematic multiscale models to predict the compressive strength of self-compacting concretes modified with nanosilica at different curing ages", Eng. Comput., 38(S3), 2365-2388. https://doi.org/10.1007/s00366-021-01385-9
  19. Faraj, R.H., Mohammed, A.A., Omer, K.M. and Ahmed, H.U. (2022b), "Soft computing techniques to predict the compressive strength of green self-compacting concrete incorporating recycled plastic aggregates and industrial waste ashes", Clean Technol. Environ. Policy, 24(7), 2253-2281. https://doi.org/10.1007/s10098-022-02318-w
  20. Farooq, F., Czarnecki, S., Niewiadomski, P., Aslam, F., Alabduljabbar, H., Ostrowski, K.A., Sliwa-Wieczorek, K., Nowobilski, T. and Malazdrewicz, S. (2021), "A comparative study for the prediction of the compressive strength of self-compacting concrete modified with fly ash", Materials, 14(17), 4934. https://doi.org/10.3390/ma14174934
  21. Gupta, T., Patel, K.A., Siddique, S., Sharma, R.K. and Chaudhary, S. (2019), "Prediction of mechanical properties of rubberised concrete exposed to elevated temperature using ANN", Measurement: J. Int. Measure. Confed., 147, 106870. https://doi.org/10.1016/j.measurement.2019.106870
  22. Halvaei, M., Jamshidi, M., Latifi, M. and Ejtemaei, M. (2020), "Effects of volume fraction and length of carbon short fibers on flexural properties of carbon textile reinforced engineered cementitious composites (ECCs); an experimental and computational study", Constr. Build. Mater., 245, 118394. https://doi.org/10.1016/j.conbuildmat.2020.118394
  23. Huseien, G.F. and Shah, K.W. (2020), "Durability and life cycle evaluation of self-compacting concrete containing fly ash as GBFS replacement with alkali activation", Constr. Build. Mater., 235, 117458. https://doi.org/10.1016/j.conbuildmat.2019.117458
  24. Kang, S.T., Lee, Y., Park, Y.D. and Kim, J.K. (2010), "Tensile fracture properties of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) with steel fiber", Compos. Struct., 92(1), 61-71. https://doi.org/10.1016/j.compstruct.2009.06.012
  25. Kang, M.C., Yoo, D.Y. and Gupta, R. (2021), "Machine learning-based prediction for compressive and flexural strengths of steel fiber-reinforced concrete", Constr. Build. Mater., 266, 121117. https://doi.org/10.1016/j.conbuildmat.2020.121117
  26. Khan, S.M., Malik, S.A., Gull, N., Saleemi, S., Islam, A. and Butt, M.T.Z. (2019), "Fabrication and modelling of the macro-mechanical properties of cross-ply laminated fibre-reinforced polymer composites using artificial neural network", Adv. Compos. Mater., 28(4), 409-423. https://doi.org/10.1080/09243046.2019.1573448
  27. Labib, W.A. (2020), "Evaluation of hybrid fibre-reinforced concrete slabs in terms of punching shear", Constr. Build. Mater., 260, 119763. https://doi.org/10.1016/j.conbuildmat.2020.119763
  28. Le, T.-T., Asteris, P.G. and Lemonis, M.E. (2021), "Prediction of axial load capacity of rectangular concrete-filled steel tube columns using machine learning techniques", Eng. Comput., 0123456789. https://doi.org/10.1007/s00366-021-01461-0
  29. Li, L.G., Zhao, Z.W., Zhu, J., Kwan, A.K.H. and Zeng, K.L. (2018), "Combined effects of water film thickness and polypropylene fibre length on fresh properties of mortar", Constr. Build. Mater., 174, 586-593. https://doi.org/10.1016/j.conbuildmat.2018.03.259
  30. Mahmood, W., Salih Mohammed, A., Asteris, P.G. and Ahmed, H. (2022), "Testing and Modeling the Gradually Applying Compressive Stress to Measuring the Strain of Self-Compacted Cement Paste Using Vipulanandan p-q Model", J. Test. Eval., 50(3), 20210219. https://doi.org/10.1520/JTE20210219
  31. Mashhadban, H., Kutanaei, S.S. and Sayarinejad, M.A. (2016), "Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network", Constr. Build. Mater., 119, 277-287. https://doi.org/10.1016/j.conbuildmat.2016.05.034
  32. Mazaheripour, H., Ghanbarpour, S., Mirmoradi, S.H. and Hosseinpour, I. (2011), "The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete", Constr. Build. Mater., 25(1), 351-358. https://doi.org/10.1016/j.conbuildmat.2010.06.018
  33. Mihashi, H., Nomura, N. and Niiseki, S. (1991), "Influence of aggregate size on fracture process zone of concrete detected with three-dimensional acoustic emission technique", Cement Concrete Res., 21(5), 737-744. https://doi.org/10.1016/0008-8846(91)90168-H
  34. Oghabi, M. and Khoshvatan, M. (2020), "The Laboratory Experiment of the Effect of Quantity and Length of Plastic Fiber on Compressive Strength and Tensile Resistance of Self-Compacting Concrete", KSCE J. Civil Eng., 24(8), 2477-2484. https://doi.org/10.1007/s12205-020-1578-9
  35. Owsiak, Z. and Grzmil, W. (2015), "The evaluation of the influence of mineral additives on the durability of selfcompacting concretes", KSCE J. Civil Eng., 19(4), 1002-1008. https://doi.org/10.1007/s12205-013-0336-7
  36. Pilakoutas, K., Neocleous, K. and Tlemat, H. (2004), "Reuse of tyre steel fibres as concrete reinforcement", Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 157(3), 131-138. https://doi.org/10.1680/ensu.2004.157.3.131
  37. Ramanathan, P., Baskar, I., Muthupriya, P. and Venkatasubramani, R. (2013), "Performance of self-compacting concrete containing different mineral admixtures", KSCE J. Civil Eng., 17(2), 465-472. https://doi.org/10.1007/s12205-013-1882-8
  38. Ramkumar, K.B., Kannan Rajkumar, P.R., Noor Ahmmad, S. and Jegan, M. (2020), "A review on performance of self-compacting concrete-use of mineral admixtures and steel fibres with artificial neural network application", Constr. Build. Mater., 261, 120215. https://doi.org/10.1016/j.conbuildmat.2020.120215
  39. Ray, S., Haque, M., Ahmed, T. and Nahin, T.T. (2021), "Comparison of artificial neural network (ANN) and response surface methodology (RSM) in predicting the compressive and splitting tensile strength of concrete prepared with glass waste and tin (Sn) can fiber", J. King Saud Univ. - Eng. Sci. https://doi.org/10.1016/j.jksues.2021.03.006
  40. Senthil, K., Satyanarayanan, K.S. and Rupali, S. (2016), "Energy absorption of fibrous self compacting reinforced concrete system", Adv. Concrete Constr., Int. J., 4(1), 37-47. https://doi.org/10.12989/acc.2016.4.1.037
  41. Sonebi, M., Grunewald, S., Cevik, A. and Walraven, J. (2016), "Modelling fresh properties of self-compacting concrete using neural network technique", Comput. Concrete, Int. J., 18(4), 903-921. https://doi.org/10.12989/cac.2016.18.4.903
  42. Song, P.S., Hwang, S. and Sheu, B.C. (2005), "Strength properties of nylon- and polypropylene-fiber-reinforced concretes", Cement Concrete Res., 35(8), 1546-1550. https://doi.org/10.1016/j.cemconres.2004.06.033
  43. Su, N., Hsu, K.C. and Chai, H.W. (2001), "A simple mix design method for self-compacting concrete", Cement Concrete Res., 31(12), 1799-1807. https://doi.org/10.1016/S0008-8846(01)00566-X
  44. Tabatabaei Mirhosseini, R. and Shamsadinei, M. (2019), "Simulation of self-compacting concrete properties containing silica quicksand using ANN models", J. Architect. Environ. Struct. Eng. Res., 1(1), 1-9. https://doi.org/10.30564/jaeser.v1i1.158
  45. Ullah Khan, S. and Ayub, T. (2020), "Flexure and shear behaviour of self-compacting reinforced concrete beams with polyethylene terephthalate fibres and strips", Structures, 25(February), 200-211. https://doi.org/10.1016/j.istruc.2020.02.023
  46. Wang, J., Dai, Q., Si, R., Ma, Y. and Guo, S. (2020), "Fresh and mechanical performance and freeze-thaw durability of steel fiber-reinforced rubber self-compacting concrete (SRSCC)", J. Cleaner Product., 277, 123180. https://doi.org/10.1016/j.jclepro.2020.123180
  47. Wu, H., Lin, X. and Zhou, A. (2020), "A review of mechanical properties of fibre reinforced concrete at elevated temperatures", Cement Concrete Res., 135(May), 106117. https://doi.org/10.1016/j.cemconres.2020.106117
  48. Zaroudi, M., Madandoust, R. and Aghaee, K. (2020), "Fresh and hardened properties of an eco-friendly fiber reinforced self-consolidated concrete composed of polyolefin fiber and natural zeolite", Constr. Build. Mater., 241, 118064. https://doi.org/10.1016/j.conbuildmat.2020.118064
  49. Zerbino, R., Tobes, J.M., Bossio, M.E. and Giaccio, G. (2012), "On the orientation of fibres in structural members fabricated with self compacting fibre reinforced concrete", Cement Concrete Compos., 34(2), 191-200. https://doi.org/10.1016/j.cemconcomp.2011.09.005
  50. Zeyad, A.M. (2020), "Effect of fibers types on fresh properties and flexural toughness of self-compacting concrete", J. Mater. Res. Technol., 9(3), 4147-4158. https://doi.org/10.1016/j.jmrt.2020.02.042