DOI QR코드

DOI QR Code

Application of concrete nanocomposite to improvement in rehabilitation and decrease sports-related injuries in sports flooring

  • Hao Wang (Department of Physical Education, Xi'an University of Posts and Telecommunications) ;
  • Huiwu Zhang (Physical Education Department, Baoding Vocational and Technical College)
  • Received : 2022.04.24
  • Accepted : 2023.02.05
  • Published : 2023.02.25

Abstract

Currently, polymer matrix nanocomposites (PMCs) are a prominent area of research due to their outstanding mechanical, thermal, and durability properties. The increase in recent studies justifies the possibility of using PMCs in structural retrofitting and reconstruction of damaged infrastructure and serving as new structural material. Using nanotechnology, nanocomposite panels in flooring combine concrete and steel, providing a very high level of performance. In sports flooring, high-performance concrete has become a challenge for reducing sports injuries and refinement in rehabilitation. As a composite material, this type of resistant concrete is one of the most durable and complex multi-phase materials. This article uses polyvinyl alcohol polymer (PVC) and multi-walled carbon nanotubes as concrete matrix fillers. Solution methods have been used for dispersing PVC and carbon nanotubes in concrete. The water-cement ratio, carbon nanotube weight ratio, and heat treatment parameters influenced the concrete nanocomposite's tensile and compressive strength. The dispersion of carbon nanotubes in cement paste and the observation of nano-microcracks in concrete was evaluated by scanning electron microscope (SEM).

Keywords

References

  1. Adamian, A., Safari, K.H., Sheikholeslami, M., Habibi, M., Al-Furjan, M. and Chen, G. (2020), "Critical Temperature and Frequency Characteristics of GPLs-Reinforced Composite Doubly Curved Panel", Appl. Sci., 10(9), 3251. https://doi.org/10.3390/app10093251
  2. Al-Furjan, M., Dehini, R., Khorami, M., Habibi, M. and won Jung, D. (2020a), "On the dynamics of the ultra-fast rotating cantilever orthotropic piezoelectric nanodisk based on nonlocal strain gradient theory", Compos. Struct., 112990. https://doi.org/10.1016/j.compstruct.2020.112990
  3. Al-Furjan, M., Fereidouni, M., Habibi, M., Abd Ali, R., Ni, J. and Safarpour, M. (2020b), "Influence of in-plane loading on the vibrations of the fully symmetric mechanical systems via dynamic simulation and generalized differential quadrature framework", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01177-7
  4. Al-Furjan, M., Fereidouni, M., Sedghiyan, D., Habibi, M. and won Jung, D. (2020c), "Three-dimensional frequency response of the CNT-Carbon-Fiber reinforced laminated circular/annular plates under initially stresses", Compos. Struct., 113146. https://doi.org/10.1016/j.compstruct.2020.113146
  5. Al-Furjan, M., Habibi, M., won Jung, D. and Safarpour, H. (2020d), "Vibrational characteristics of a higher-order laminated composite viscoelastic annular microplate via modified couple stress theory", Compos. Struct., 113152. https://doi.org/10.1016/j.compstruct.2020.113152
  6. Al-Furjan, M., Oyarhossein, M.A., Habibi, M., Safarpour, H. and Jung, D.W. (2020e), "Frequency and critical angular velocity characteristics of rotary laminated cantilever microdisk via two-dimensional analysis", Thin-Wall. Struct., 157, 107111. https://doi.org/10.1016/j.tws.2020.107111
  7. Al-Furjan, M.S.H., Dehini, R., Khorami, M., Habibi, M. and won Jung, D. (2021a), "On the dynamics of the ultra-fast rotating cantilever orthotropic piezoelectric nanodisk based on nonlocal strain gradient theory", Compos. Struct., 255, 112990. https://doi.org/10.1016/j.compstruct.2020.112990
  8. Al-Furjan, M.S.H., hatami, A., Habibi, M., Shan, L. and Tounsi, A. (2021b), "On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method", Compos. Struct., 257, 113150. https://doi.org/10.1016/j.compstruct.2020.113150
  9. Al-Furjan, M.S.H., Samimi-Sohrforozani, E., Habibi, M., Jung, D.w. and Safarpour, H. (2021c), "Vibrational characteristics of a higher-order laminated composite viscoelastic annular microplate via modified couple stress theory", Compos. Struct., 257, 113152. https://doi.org/10.1016/j.compstruct.2020.113152
  10. Azimi, M., Mirjavadi, S.S., Shafiei, N. and Hamouda, A.M.S. (2016), "Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam", Appl. Phys. A, 123(1), 104. https://doi.org/10.1007/s00339-016-0712-5
  11. Azimi, M., Mirjavadi, S.S., Shafiei, N., Hamouda, A.M.S. and Davari, E. (2018), "Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution", Mech. Adv. Mater. Struct., 25(6), 467-480. https://doi.org/10.1080/15376494.2017.1285455
  12. Bai, Y., Alzahrani, B., Baharom, S. and Habibi, M. (2020), "Semi-numerical simulation for vibrational responses of the viscoelastic imperfect annular system with honeycomb core under residual pressure", Eng. Comput., 1-26. https://doi.org/10.1007/s00366-020-01191-9
  13. Battisti, A., Skordos, A.A. and Partridge, I.K. (2010), "Percolation threshold of carbon nanotubes filled unsaturated polyesters", Compos. Sci. Technol., 70(4), 633-637. https://doi.org/10.1016/j.compscitech.2009.12.017
  14. Belytschko, T., Xiao, S.P., Schatz, G.C. and Ruoff, R.S. (2002), "Atomistic simulations of nanotube fracture", Phys. Rev. B, 65(23), 235430. 10.1103/PhysRevB.65.235430
  15. Cao, C., Wang, J., Kwok, D., Cui, F., Zhang, Z., Zhao, D., Li, M.J. and Zou, Q. (2022a), "webTWAS: a resource for disease candidate susceptibility genes identified by transcriptome-wide association study", Nucleic Acids Res., 50(D1), D1123-D1130. https://doi.org/10.1093/nar/gkab957
  16. Cao, Y., Zhao, N., Xu, N., Zhao, X. and Alsaadi, F.E. (2022b), "Minimal-Approximation-Based Adaptive Event-Triggered Control of Switched Nonlinear Systems with Unknown Control Direction", Electronics, 11(20), 3386. https://doi.org/10.3390/electronics11203386
  17. Chen, J., Tong, H., Yuan, J., Fang, Y. and Gu, R. (2022), "Permeability Prediction Model Modified on Kozeny-Carman for Building Foundation of Clay Soil", Buildings, 12(11), 1798. https://doi.org/10.3390/buildings12111798
  18. Cheng, F., Niu, B., Zhang, L. and Chen, Z. (2022), "Prescribed performance-based low-computation adaptive tracking control for uncertain nonlinear systems with periodic disturbances", IEEE Transact. Circuits Syst. II: Express Briefs, 69(11), 4414-4418. https://doi.org/10.1109/TCSII.2022.3181190
  19. Chuah, S., Pan, Z., Sanjayan, J.G., Wang, C.M. and Duan, W.H. (2014), "Nano reinforced cement and concrete composites and new perspective from graphene oxide", Constr. Build. Mater., 73, 113-124. https://doi.org/10.1016/j.conbuildmat.2014.09.040
  20. Dai, Z., Zhang, L., Bolandi, S.Y. and Habibi, M. (2021a), "On the vibrations of the non-polynomial viscoelastic composite open-type shell under residual stresses", Compos. Struct., 263, 113599. https://doi.org/10.1016/j.compstruct.2021.113599
  21. Dai, Z., Zhang, L., Bolandi, S.Y. and Habibi, M. (2021b), "On the vibrations of the non-polynomial viscoelastic composite open-type shell under residual stresses", Compos. Struct., 113599. https://doi.org/10.1016/j.compstruct.2021.113599
  22. Diekmann, A., Giese, U. and Schaumann, I. (2019), "Polycyclic aromatic hydrocarbons in consumer goods made from recycled rubber material: A review", Chemosphere, 220, 1163-1178. https://doi.org/10.1016/j.chemosphere.2018.12.111
  23. Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., Int. J., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837
  24. Ebrahimi, F. and Shafiei, N. (2017), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory", Mech. Adv. Mater. Struct., 24(9), 761-772. https://doi.org/10.1080/15376494.2016.1196781
  25. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499
  26. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., Int. J., 5(2), 141-169. https://doi.org/10.12989/anr.2017.5.2.141
  27. Fang, Q., Liu, X., Zeng, K., Zhang, X., Zhou, M. and Du, J. (2022), "Centrifuge modelling of tunnelling below existing twin tunnels with different types of support", Undergr. Space, 7(6), 1125-1138. https://doi.org/10.1016/j.undsp.2022.02.007
  28. Fang, B., Hu, Z., Shi, T., Liu, Y., Wang, X., Yang, D., Zhu, K., Zhao, X. and Zhao, Z. (2023a), "Research progress on the properties and applications of magnesium phosphate cement", Ceramics Int., 49(3), 4001-4016. https://doi.org/10.1016/j.ceramint.2022.11.078
  29. Fang, Q., Wang, G., Du, J., Liu, Y. and Zhou, M. (2023b), "Prediction of tunnelling induced ground movement in clay using principle of minimum total potential energy", Tunnell. Undergr. Space Technol., 131, 104854. https://doi.org/10.1016/j.tust.2022.104854
  30. Ghadiri, M. and Shafiei, N. (2016a), "Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen's theory using differential quadrature method", Microsyst. Technol., 22(12), 2853-2867. https://doi.org/10.1007/s00542-015-2662-9
  31. Ghadiri, M. and Shafiei, N. (2016b), "Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method", J. Vib. Control, 23(19), 3247-3265. https://doi.org/10.1177/1077546315627723
  32. Ghadiri, M. and Shafiei, N. (2016c), "Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions", Acta Astronautica, 121, 221-240. https://doi.org/10.1016/j.actaastro.2016.01.003
  33. Ghadiri, M., Hosseini, S.H.S. and Shafiei, N. (2016a), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., 23(12), 1414-1420. https://doi.org/10.1080/15376494.2015.1091527
  34. Ghadiri, M., Shafiei, N. and Akbarshahi, A. (2016b), "Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam", Appl. Phys. A, 122(7), 673. https://doi.org/10.1007/s00339-016-0196-3
  35. Ghadiri, M., Shafiei, N. and Alireza Mousavi, S. (2016c), "Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM", Appl. Phys. A, 122(9), 837. https://doi.org/10.1007/s00339-016-0364-5
  36. Ghadiri, M., Shafiei, N., Salekdeh, S.H., Mottaghi, P. and Mirzaie, T. (2016d), "Investigation of the dental implant geometry effect on stress distribution at dental implant-bone interface", J. Brazil. Soc. Mech. Sci. Eng., 38(2), 335-343. https://doi.org/10.1007/s40430-015-0472-8
  37. Ghadiri, M., Mahinzare, M., Shafiei, N. and Ghorbani, K. (2017a), "On size-dependent thermal buckling and free vibration of circular FG Microplates in thermal environments", Microsyst. Technol., 23(10), 4989-5001. https://doi.org/10.1007/s00542-017-3308-x
  38. Ghadiri, M., Shafiei, N. and Alavi, H. (2017b), "Thermomechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770
  39. Ghadiri, M., Shafiei, N. and Alavi, H. (2017c), "Vibration analysis of a rotating nanoplate using nonlocal elasticity theory", J. Solid Mech., 9(2), 319-337. 20.1001.1.20083505.2017.9.2.8.5 20.1001.1.20083505.2017.9.2.8.5
  40. Ghadiri, M., Shafiei, N. and Babaei, R. (2017d), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., Int. J., 25(2), 197-207. https://doi.org/10.12989/SCS.2017.25.2.197
  41. Ghadiri, M., Shafiei, N. and Safarpour, H. (2017e), "Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen's nonlocal elasticity", Microsyst. Technol., 23(4), 1045-1065. https://doi.org/10.1007/s00542-016-2822-6
  42. Golestani, B., Nam, B.H., Moghadas Nejad, F. and Fallah, S. (2015), "Nanoclay application to asphalt concrete: Characterization of polymer and linear nanocomposite-modified asphalt binder and mixture", Constr. Build. Mate., 91, 32-38. https://doi.org/10.1016/j.conbuildmat.2015.05.019
  43. Gul, S., Kausar, A., Muhammad, B. and Jabeen, S. (2016), "Research Progress on Properties and Applications of Polymer/Clay Nanocomposite", Polym.-Plastics Technol. Eng., 55(7), 684-703. https://doi.org/10.1080/03602559.2015.1098699
  44. Guler, O., Cacim, N.N., Evin, E. and Yahia, I.S. (2020), "The synergistic effect of CNTs-polymeric surfactant on the properties of concrete nanocomposites: Comparative study", J. Compos. Mater., 55(10), 1371-1384. https://doi.org/10.1177/0021998320971346
  45. Guo, Y., Mi, H. and Habibi, M. (2021), "Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system", Mech. Syst. Signal Process., 157, 107723. https://doi.org/10.1016/j.ymssp.2021.107723
  46. Han, B., Yu, X. and Ou, J. (2009), "Dispersion of carbon nanotubes in cement-based composites and its influence on the piezoresistivities of composites", Adapt. Struct. Intell. Syst., Vol. 48975, pp. 57-62. https://doi.org/10.1115/SMASIS2009-1318
  47. Han, B., Yu, X. and Ou, J. (2011), Multifunctional and Smart Carbon Nanotube Reinforced Cement-Based Materials, Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16657-0_1
  48. He, Y., Chang, X.-H., Wang, H. and Zhao, X. (2022), "Command-Filtered Adaptive Fuzzy Control for Switched MIMO Nonlinear Systems with Unknown Dead Zones and Full State Constraints", Int. J. Fuzzy Syst. https://doi.org/10.1007/s40815-022-01384-y
  49. Hernandez-Flores, H., Pariona, N., Herrera-Trejo, M., Hdz-Garcia, H.M. and Mtz-Enriquez, A.I. (2018), "Concrete/maghemite nanocomposites as novel adsorbents for arsenic removal", J. Molecul. Struct., 1171, 9-16. https://doi.org/10.1016/j.molstruc.2018.05.078
  50. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01456-x
  51. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform micro-tube", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-021-01395-7
  52. Huang, Y., Zhang, W. and Liu, X. (2022), "Assessment of Diagonal Macrocrack-Induced Debonding Mechanisms in FRP-Strengthened RC Beams", J. Compos. Constr., 26(5), 04022056. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001255
  53. Kannan, U., Gafoor, S.A., Srivastava, S., Nithyadharan, M., Gupta, S.S. and Maliyekkal, S.M. (2022), "A waste-derived nanocomposite sealant for repairing micro-cracks in concrete", J. Build. Eng., 48, 103965. https://doi.org/10.1016/j.jobe.2021.103965
  54. Konsta-Gdoutos, M.S., Metaxa, Z.S. and Shah, S.P. (2010), "Highly dispersed carbon nanotube reinforced cement based materials", Cement Concrete Res., 40(7), 1052-1059. https://doi.org/10.1016/j.cemconres.2010.02.015
  55. Li, G.Y., Wang, P.M. and Zhao, X. (2005), "Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes", Carbon, 43(6), 1239-1245. https://doi.org/10.1016/j.carbon.2004.12.017
  56. Li, J., Tang, F. and Habibi, M. (2020a), "Bi-directional thermal buckling and resonance frequency characteristics of a GNP-reinforced composite nanostructure", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01110-y
  57. Li, Y., Li, S., Guo, K., Fang, X. and Habibi, M. (2020b), "On the modeling of bending responses of graphene-reinforced higher order annular plate via two-dimensional continuum mechanics approach", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01166-w.
  58. Li, P., Yang, M. and Wu, Q. (2021), "Confidence interval based distributionally robust real-time economic dispatch approach considering wind power accommodation risk", IEEE Transact. Sustain. Energy, 12(1), 58-69. https://doi.org/10.1109/TSTE.2020.2978634
  59. Liu, H., Shen, S., Oslub, K., Habibi, M. and Safarpour, H. (2021), "Amplitude motion and frequency simulation of a composite viscoelastic microsystem within modified couple stress elasticity", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-021-01316-8
  60. Lu, S., Ban, Y., Zhang, X., Yang, B., Yin, L., Liu, S. and Zheng, W. (2022), "Adaptive control of time delay teleoperation system with uncertain dynamics", Front Neurorobot, 152. https://doi.org/10.3389/fnbot.2022.928863
  61. Ma, C., Liu, H.-Y., Du, X., Mach, L., Xu, F. and Mai, Y.-W. (2015), "Fracture resistance, thermal and electrical properties of epoxy composites containing aligned carbon nanotubes by low magnetic field", Compos. Sci. Technol., 114, 126-135. https://doi.org/10.1016/j.compscitech.2015.04.007
  62. Malisoux, L., Gette, P., Urhausen, A., Bomfim, J. and Theisen, D. (2017), "Influence of sports flooring and shoes on impact forces and performance during jump tasks", PLoS One, 12(10), e0186297. https://doi.org/10.1371/journal.pone.0186297
  63. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A., Kazemi, M. and Structures, C. (2017a), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., Int. J., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415
  64. Mirjavadi, S.S., Matin, A., Shafiei, N., Rabby, S. and Mohasel Afshari, B. (2017b), "Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam", J. Thermal Stress., 40(10), 1201-1214. https://doi.org/10.1080/01495739.2017.1332962
  65. Mirjavadi, S.S., Mohasel Afshari, B., Shafiei, N., Rabby, S. and Kazemi, M. (2017c), "Effect of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro-scale Timoshenko beam", J. Vib. Control, 24(18), 4211-4225. https://doi.org/10.1177/1077546317721871
  66. Mirjavadi, S.S., Rabby, S., Shafiei, N., Afshari, B.M. and Kazemi, M. (2017d), "On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment", Appl. Phys. A, 123(5), 315. https://doi.org/10.1007/s00339-017-0918-1
  67. Mousavi, S.M., Shafiei, N. and Dadvand, A. (2017), "Numerical simulation of subsonic turbulent flow over NACA0012 airfoil: evaluation of turbulence models", Sigma J. Eng. Natural Sci., 35(1), 133-155. https://dergipark.org.tr/en/pub/sigma/issue/65585/1016455#article_cite 1016455#article_cite
  68. Musso, S., Tulliani, J.-M., Ferro, G. and Tagliaferro, A. (2009), "Influence of carbon nanotubes structure on the mechanical behavior of cement composites", Compos. Sci. Technol., 69(11), 1985-1990. https://doi.org/10.1016/j.compscitech.2009.05.002
  69. Omidi, S., Oskooee, M.B. and Shafiei, N. (2013), "Finite element analysis of an ultra-fine grained Titanium dental implant covered by different thicknesses of hydroxyapatite layer", Indian J. Dentistry, 4(1), 1-4. https://doi.org/10.1016/j.ijd.2012.10.002
  70. Peng, R., Wang, Y., Tang, W., Yang, Y. and Xie, X. (2013), "Progress in imidazolium ionic liquids assisted fabrication of carbon nanotube and graphene polymer composites", Polymers, 5(2), 847-872. https://doi.org/10.3390/polym5020847
  71. Peyvandi, A. and Soroushian, P. (2015), "Structural performance of dry-cast concrete nanocomposite pipes", Mater. Struct., 48(1), 461-470. https://doi.org/10.1617/s11527-013-0196-0
  72. Peyvandi, A., Sbia, L.A., Soroushian, P. and Sobolev, K. (2013), "Effect of the cementitious paste density on the performance efficiency of carbon nanofiber in concrete nanocomposite", Constr. Build. Mater., 48, 265-269. https://doi.org/10.1016/j.conbuildmat.2013.06.094
  73. Rahmanian, S., Thean, K.S., Suraya, A.R., Shazed, M.A., Mohd Salleh, M.A. and Yusoff, H.M. (2013), "Carbon and glass hierarchical fibers: Influence of carbon nanotubes on tensile, flexural and impact properties of short fiber reinforced composites", Mater. Des., 43, 10-16. https://doi.org/10.1016/j.matdes.2012.06.025
  74. Raki, L., Beaudoin, J.J. and Mitchell, L. (2004), "Layered double hydroxide-like materials: nanocomposites for use in concrete", Cement Concrete Res., 34(9), 1717-1724. https://doi.org/10.1016/j.cemconres.2004.05.012
  75. Saafi, M. (2009), "Wireless and embedded carbon nanotube networks for damage detection in concrete structures", Nanotechnology, 20(39), 395502. https://doi.org/10.1088/0957-4484/20/39/395502
  76. Sakr, M.R. and Bassuoni, M.T. (2021), "Silane and methyl-methacrylate based nanocomposites as coatings for concrete exposed to salt solutions and cyclic environments", Cement Concrete Compos., 115, 103841. https://doi.org/10.1016/j.cemconcomp.2020.103841
  77. Salvetat, J.P., Bonard, J.M., Thomson, N.H., Kulik, A.J., Forro, L., Benoit, W. and Zuppiroli, L. (1999), "Mechanical properties of carbon nanotubes", Appl. Phys. A, 69(3), 255-260. https://doi.org/10.1007/s003390050999
  78. Scarfato, P., Di Maio, L., Fariello, M.L., Russo, P. and Incarnato, L. (2012), "Preparation and evaluation of polymer/clay nanocomposite surface treatments for concrete durability enhancement", Cement Concrete Compos., 34(3), 297-305. https://doi.org/10.1016/j.cemconcomp.2011.11.006
  79. Shafiei, N. and Kazemi, M. (2017a), "Buckling analysis on the bi-dimensional functionally graded porous tapered nano-/microscale beams", Aerosp. Sci. Technol., 66, 1-11. https://doi.org/10.1016/j.ast.2017.02.019
  80. Shafiei, N. and Kazemi, M. (2017b), "Nonlinear buckling of functionally graded nano-/micro-scaled porous beams", Compos. Struct., 178, 483-492. https://doi.org/10.1016/j.compstruct.2017.07.045
  81. Shafiei, N. and She, G.-L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133, 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004
  82. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016a), "Comparison of modeling of the rotating tapered axially functionally graded Timoshenko and Euler-Bernoulli microbeams", Physica E: Low-dimens. Syst. Nanostr., 83, 74-87. https://doi.org/10.1016/j.physe.2016.04.011
  83. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016b), "Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen's nonlocal elasticity and DQM", Appl. Phys. A, 122(8), 728. https://doi.org/10.1007/s00339-016-0245-y
  84. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016c), "Nonlinear vibration of axially functionally graded tapered microbeams", Int. J. Eng. Sci., 102, 12-26. https://doi.org/10.1016/j.ijengsci.2016.02.007
  85. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016d), "On size-dependent vibration of rotary axially functionally graded microbeam", Int. J. Eng. Sci., 101, 29-44. https://doi.org/10.1016/j.ijengsci.2015.12.008
  86. Shafiei, N., Kazemi, M., Safi, M. and Ghadiri, M. (2016e), "Nonlinear vibration of axially functionally graded non-uniform nanobeams", Int. J. Eng. Sci., 106, 77-94. https://doi.org/10.1016/j.ijengsci.2016.05.009
  87. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016f), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007
  88. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016g), "Vibration behavior of a rotating non-uniform FG microbeam based on the modified couple stress theory and GDQEM", Compos. Struct., 149, 157-169. https://doi.org/10.1016/j.compstruct.2016.04.024
  89. Shafiei, N., Ghadiri, M., Makvandi, H. and Hosseini, S.A. (2017a), "Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method", Appl. Mathe. Modell., 43, 191-206. https://doi.org/10.1016/j.apm.2016.10.061
  90. Shafiei, N., Kazemi, M. and Fatahi, L. (2017b), "Transverse vibration of rotary tapered microbeam based on modified couple stress theory and generalized differential quadrature element method", Mech. Adv. Mater. Struct., 24(3), 240-252. https://doi.org/10.1080/15376494.2015.1128025
  91. Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A.M.S. (2017c), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168, 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048
  92. Shafiei, N., Mirjavadi, S.S., MohaselAfshari, B., Rabby, S. and Kazemi, M. (2017d), "Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Methods Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007
  93. Shafiei, N., Ghadiri, M. and Mahinzare, M. (2019), "Flapwise bending vibration analysis of rotary tapered functionally graded nanobeam in thermal environment", Mech. Adv. Mater. Struct., 26(2), 139-155. https://doi.org/10.1080/15376494.2017.1365982
  94. Shafiei, N., Hamisi, M. and Ghadiri, M. (2020), "Vibration analysis of rotary tapered axially functionally graded Timoshenko nanobeam in thermal environment", J. Solid Mech., 12(1), 16-32. 20.1001.1.20083505.2020.12.1.2.8 20.1001.1.20083505.2020.12.1.2.8
  95. Shin, Y.C., Lee, W.I. and Kim, H.S. (2020), "Mode II interlaminar fracture toughness of carbon nanotubes/epoxy film-interleaved carbon fiber composites", Compos. Struct., 236, 111808. https://doi.org/10.1016/j.compstruct.2019.111808
  96. Shivanian, E., Ghadiri, M. and Shafiei, N. (2017), "Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation", Appl. Phys. A, 123(5), 329. https://doi.org/10.1007/s00339-017-0955-9
  97. Si, Z., Yang, M., Yu, Y. and Ding, T. (2021), "Photovoltaic power forecast based on satellite images considering effects of solar position", Appl. Energy, 302, 117514. https://doi.org/10.1016/j.apenergy.2021.117514
  98. Spitalsky, Z., Tasis, D., Papagelis, K. and Galiotis, C. (2010), "Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties", Progress Polym. Sci., 35(3), 357-401. https://doi.org/10.1016/j.progpolymsci.2009.09.003
  99. Sun, Z., Li, J., Yu, M., Kathaperumal, M. and Wong, C.-P. (2022), "A review of the thermal conductivity of silver-epoxy nanocomposites as encapsulation material for packaging applications", Chem. Eng. J., 446, 137319. https://doi.org/10.1016/j.cej.2022.137319
  100. Wang, H.D., Wang, J.L. and Zhou, Z.F. (2010), "Research of Statistical Relationship between Keel Structure and Sports Flooring Property", Adv. Mater. Res., 113-116, 2090-2095. https://doi.org/10.4028/www.scientific.net/AMR.113-116.2090
  101. Wang, Z., Fu, W., Hu, L., Zhao, M., Guo, T., Hrynsphan, D., Tatsiana, S. and Chen, J. (2021), "Improvement of electron transfer efficiency during denitrification process by Fe-Pd/multi-walled carbon nanotubes: Possessed redox characteristics and secreted endogenous electron mediator", Sci. Total Environ., 781, 146686. https://doi.org/10.1016/j.scitotenv.2021.146686
  102. Wang, J., Tian, J., Zhang, X., Yang, B., Liu, S., Yin, L. and Zheng, W. (2022a), "Control of time delay force feedback teleoperation system with finite time convergence", Front. Neurorobot., 16, 877069. https://doi.org/10.3389/fnbot.2022.877069
  103. Wang, M., Yang, M., Fang, Z., Wang, M. and Wu, Q. (2022b), "A Practical Feeder Planning Model for Urban Distribution System", IEEE Transact. Power Syst., 1-1. https://doi.org/10.1109/TPWRS.2022.3170933
  104. Wang, P., Gao, Z., Pan, F., Moradi, Z., Mahmoudi, T. and Khadimallah, M.A. (2022c), "A couple of GDQM and iteration techniques for the linear and nonlinear buckling of bidirectional functionally graded nanotubes based on the nonlocal strain gradient theory and high-order beam theory", Eng. Anal. Bound. Elem., 143, 124-136. https://doi.org/10.1016/j.enganabound.2022.06.007
  105. Woo, R.S.C., Zhu, H., Chow, M.M.K., Leung, C.K.Y. and Kim, J.- K. (2008), "Barrier performance of silane-clay nanocomposite coatings on concrete structure", Compos. Sci. Technol., 68(14), 2828-2836. https://doi.org/10.1016/j.compscitech.2007.10.028
  106. Xu, X. and Jiang, Q. (2019), "Brief analysis on application of PVC foam materials in building material industry", Mater. Sci. Forum, 944, 729-735. https://doi.org/10.4028/www.scientific.net/MSF.944.729
  107. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 114395. https://doi.org/10.1016/j.compstruct.2021.114395
  108. Yu, X. and Kwon, E. (2009), "A carbon nanotube/cement composite with piezoresistive properties", Smart Mater. Struct., 18(5), 055010. https://doi.org/10.1088/0964-1726/18/5/055010
  109. Yu, L. and Xu, F. (2020), "Bilateral chloride diffusion model of nanocomposite concrete in marine engineering", Constr. Build. Mater., 263, 120634. https://doi.org/10.1016/j.conbuildmat.2020.120634
  110. Zare, Y. (2016), "Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties", Compos. Part A: Appl. Sci. Manuf., 84, 158-164. https://doi.org/10.1016/j.compositesa.2016.01.020
  111. Zare, R., Najaafi, N., Habibi, M., Ebrahimi, F. and Safarpour, H. (2020), "Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller", Smart Struct. Syst., Int. J., 26(4), 469-480. https://doi.org/10.12989/sss.2020.26.4.469
  112. Zhang, C. and Ali, A. (2021), "The advancement of seismic isolation and energy dissipation mechanisms based on friction", Soil Dyn. Earthq. Eng., 146, 106746. https://doi.org/10.1016/j.soildyn.2021.106746
  113. Zhang, W. and Huang, Y. (2022), "Three-dimensional numerical investigation of mixed-mode debonding of FRP-concrete interface using a cohesive zone model", Constr. Build. Mater., 350, 128818. https://doi.org/10.1016/j.conbuildmat.2022.128818
  114. Zhang, F., Chen, C., Hou, R., Li, J., Cao, Y., Dong, S., Lin, C. and Pan, J. (2019), "Investigation and application of mussel adhesive protein nanocomposite film-forming inhibitor for reinforced concrete engineering", Corros. Sci., 153, 333-340. https://doi.org/10.1016/j.corsci.2019.03.023
  115. Zhang, X., Shamsodin, M., Wang, H., NoormohammadiArani, O., Khan, A.M., Habibi, M. and Al-Furjan, M. (2020), "Dynamic information of the time-dependent tobullian biomolecular structure using a high-accuracy size-dependent theory", J. Biomolecul. Struct. Dyn., 1-16. https://doi.org/10.1080/07391102.2020.1760939
  116. Zhang, L., Chen, Z., Habibi, M., Ghabussi, A. and Alyousef, R. (2021), "Low-velocity impact, resonance, and frequency responses of FG-GPLRC viscoelastic doubly curved panel", Compos. Struct., 269, 114000. https://doi.org/10.1016/j.compstruct.2021.114000
  117. Zhang, H., Zou, Q., Ju, Y., Song, C. and Chen, D. (2022a), "Distance-based support vector machine to predict DNA N6-methyladenine modification", Current Bioinform., 17(5), 473-482. https://doi.org/10.2174/1574893617666220404145517
  118. Zhang, L., Ma, R., Lai, J., Ruan, S., Qian, X., Yan, D., Qian, K. and Wang, S. (2022b), "Performance buildup of concrete cured under low-temperatures: Use of a new nanocomposite accelerator and its application", Constr. Build. Mater., 335, 127529. https://doi.org/10.1016/j.conbuildmat.2022.127529
  119. Zhang, Z., Liang, G., Niu, Q., Wang, F., Chen, J., Zhao, B. and Ke, L. (2022c), "A Wiener degradation process with drift-based approach of determining target reliability index of concrete structures", Quality Reliabil. Eng. Int., 38(7), 3710-3725. https://doi.org/10.1002/qre.3168
  120. Zhao, J.-C., Du, F.-P., Zhou, X.-P., Cui, W., Wang, X.-M., Zhu, H., Xie, X.-L. and Mai, Y.-W. (2011), "Thermal conductive and electrical properties of polyurethane/hyperbranched poly(urea-urethane)-grafted multi-walled carbon nanotube composites", Compos. Part B: Eng., 42(8), 2111-2116. https://doi.org/10.1016/j.compositesb.2011.05.005
  121. Zhao, Y., Wang, H., Xu, N., Zong, G. and Zhao, X. (2023), "Reinforcement learning-based decentralized fault tolerant control for constrained interconnected nonlinear systems", Chaos Solitons Fractals, 167, 113034. https://doi.org/10.1016/j.chaos.2022.113034