DOI QR코드

DOI QR Code

Lateral torsional buckling of doubly-symmetric steel cellular I-Beams

  • Mehmet Fethi Ertenli (Deparment of Civil Engineering, Faculty of Engineering, Karabuk University) ;
  • Erdal Erdal (Deparment of Computer Engineering, Faculty of Engineering and Architecture, Kirikkale University) ;
  • Alper Buyukkaragoz (Deparment of Civil Engineering, Faculty of Technology, Gazi University) ;
  • Ilker Kalkan (Deparment of Civil Engineering, Faculty of Engineering and Architecture, Kirikkale University) ;
  • Ceyhun Aksoylu (Department of Civil Engineering, Konya Technical University) ;
  • Yasin Onuralp Ozkilic (Department of Civil Engineering, Necmettin Erbakan University)
  • 투고 : 2022.11.15
  • 심사 : 2023.02.15
  • 발행 : 2023.03.10

초록

The absence of an important portion of the web plate in steel beams with multiple circular perforations, cellular beams, causes the web plate to undergo distortions prior to and during lateral torsional buckling (LTB). The conventional LTB equations in the codes and literature underestimate the buckling moments of cellular beams due to web distortions. The present study is an attempt to develop analytical methods for estimating the elastic buckling moments of cellular beams. The proposed methods rely on the reductions in the torsional and warping rigidities of the beams due to web distortions and the reductions in the weak-axis bending and torsional rigidities due to the presence of web openings. To test the accuracy of the analytical estimates from proposed solutions, a total of 114 finite element analyses were conducted for six different standard IPEO sections and varying unbraced lengths within the elastic limits. These analyses clearly indicated that the LTB solutions in the AISC 360-16 and AS4100:2020 codes overestimate the buckling loads of cellular beams within elastic limits, particularly at shorter span lengths. The LDB solutions in the literature and the Eurocode 3 LTB solution, on the other hand, provided conservative buckling moment estimates along the entire range of elastic buckling.

키워드

참고문헌

  1. AISC 360-10 (2010), Specification for Structural Steel Buildings, American Institute of Steel Construction; Chicago, Illinois, USA.
  2. AISC 360-16 (2016), Specification for Structural Steel Buildings, American Institute of Steel Construction; Chicago, Illinois, USA.
  3. AS 4100:1998 (1998), Steel Structures, Standards Association of Australia. Sydney, Australia.
  4. AS 4100:2020 (2020), Steel Structures, Standards Association of Australia. Sydney, Australia.
  5. Aydin, R., Gunaydin, A. and Kirac, N. (2015), "On the evaluation of critical lateral buckling loads of prismatic steel beams", Steel Compos. Struct., 18(3), 603-621. http://dx.doi.org/10.12989/scs.2015.18.3.603.
  6. Bas, S. (2019), "Lateral torsional buckling of steel I-beams: Effect of initial geometric imperfection", Steel Compos. Struct., 30, 483-492. http://dx.doi.org/10.12989/scs.2019.30.5.483.
  7. Benmohammed, N., Ziane, N., Meftah, S.A. and Ruta, G. (2020), "Distortional effect on global buckling and post-buckling behaviour of steel box beams", Steel Compos. Struct., 35(6), 717-727. http://dx.doi.org/10.12989/scs.2020.35.6.717.
  8. Boissonnade, N., Greiner, R., Jaspart, J.P. and Lindner, J. (2006), "Rules for member stability in EN 1993-1-1; Background documentation and design guidelines", Publication n° 119 do ECCS, 259: Portugal.
  9. Bradford, M.A. (1992), "Lateral-distortional buckling of steel I-section members", J. Constr. Steel Res., 23(1-3), 97-116. https://doi.org/10.1016/0143-974X(92)90038-G.
  10. Durif, S., Bouchair, A. and Bacconnet, C. (2015), "Elastic rotational restraint of web-post in cellular beams with sinusoidal openings", Steel Compos. Struct., 18(2), 325-344. http://dx.doi.org/10.12989/scs.2015.18.2.325.
  11. EN 1993-1-1:2005 (2005), Eurocode 3: Design of Steel Structures - Part 1-1: General Rules and Rules for Buildings, European Committee for Standardization (CEN); Brussels, Belgium.
  12. Fares, S.S., Coulson, J. and Dinehart, D.W. (2016), "Castellated and cellular beam design", Steel Design Guide 31, American Institute of Steel Construction, Chicago, Illinois, USA.
  13. Hosseinpour, M., Moghbeli, A. and Sharifi, Y. (2021), "Evaluation of lateral-distortional buckling strength of castellated steel beams using regression models", Innovat. Infrastruct. Solutions, 3, 142. https://doi.org/10.1007/s41062-021-00510-3.
  14. Jiang, L., Qi, J., Scanlon, A. and Sun, L. (2013), "Distortional and local buckling of steel-concrete composite box-beam", Steel Compos. Struct., 14(3), 243-265. http://dx.doi.org/10.12989/scs.2013.14.3.243.
  15. Jola, E.J., Vu, Q.V. and Kim, S.E. (2020), "Effect of residual stress and geometric imperfection on the strength of steel box girders", Steel Compos. Struct., 34(3), 423-440.
  16. Kalkan, I. and Buyukkaragoz, A. (2012), "A numerical and analytical study on distortional buckling of doubly-symmetric steel I-beams", J. Constr. Steel Res., 70, 289-297. https://doi.org/10.1016/j.jcsr.2011.06.006.
  17. Kasiviswanathan, M. and Anbarasu, M. (2021), "Simplified approach to estimate the lateral torsional buckling of GFRP channel beams", Struct. Eng. Mech., 77(4), 523-533. https://doi.org/10.12989/SEM.2021.77.4.523.
  18. Mimoune, M. and Siouane, S. (2017), "Numerical analysis on lateral distortional buckling of octagonal castellated steel beams", Proceedings of the 1st Global Civil Engineering Conference (GCEC 2017), Kuala Lumpur, Malaysia, July 25-28. https://doi.org/10.1007/978-981-10-8016-6_34.
  19. Nethercot, D.A. and Trahair, N.S. (1976), "Inelastic lateral buckling of determinate beams", ASCE, J. Struct. Div., 102(ST4), 701-17. https://doi.org/10.1061/JSDEAG.0004312.
  20. Nseir, J., Lo, M., Sonck, D., Somja, H., Vassart, O. and Boissonnade, D. (2012), "Lateral torsional buckling of cellular steel beams", Proceedings of the Annual Stability Conference, Structural Stability Research Council, Grapevine, Texas, April 18-21.
  21. Mohebkhah, A. (2004), "The moment-gradient factor in lateraltorsional buckling on inelastic castellated beams", J. Constr. Steel Res., 60(10), 1481-1494. https://doi.org/10.1016/j.jcsr.2004.02.002.
  22. Papangelis, J.P., Trahair, N.S. and Hancock, G.J. (1998), "Elastic flexural-torsional buckling of structures by computer", Comput. Struct., 68(1-3), 125-137. https://doi.org/10.1016/S0045-7949(98)00037-6
  23. Piassi, A.D., Dias, J.V., Calenzani A.F.G. and Menandro, F.C.C. (2018), "Lateral distortional buckling of cellular composite-beams", IBRACON Struct. Mater. J., 11(2), 331-356. http://dx.doi.org/10.1590/S1983-41952018000200007.
  24. Rezaiee-Pajand, M., Masoodi, A.R. and Alepaighambar, A. (2018), "Lateral-torsional buckling of functionally graded tapered I-beams considering lateral bracing", Steel Compos. Struct., 28(4), 403-414. http://dx.doi.org/10.12989/SCS.2018.28.4.403.
  25. Showkati, H., Ghazijahani, T.G., Noori, A. and Zirakian, T. (2012), "Experiments on elastically braced castellated beams", J. Constr. Steel Res., 77, 163-172. https://doi.org/10.1016/j.jcsr.2012.05.008.
  26. Silva, C.C., Caldas, R.B., Fakury, R.H., Dias, J.V.F. and Carvalho, H. (2020), "Elastic critical moment of lateral distortional buckling of castellated composite beams under uniform hogging moment", Pract. Period. Struct. Des. Constr., 25(4), 04020032. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000518.
  27. Simulia 3DS (2015), Abaqus Analysis User's Manual (version 6.12), Faculty of Mathematics, University of Cambridge, Cambridge, UK.
  28. Zirakian, T. and Nojoumi, S.A. (2011), "Elastic lateral-distortional buckling of I-beams and the Meek Plot", Struct. Eng. Mech., 37(3), 297-307. https://doi.org/10.12989/sem.2011.37.3.297.
  29. Zhou, W., Li, S., Jiang, L., and Huang, Z. (2015), "Distortional buckling calculation method of steel-concrete composite box beam in negative moment area", Steel Compos. Struct., 19(5), 1203-1219. http://dx.doi.org/10.12989/scs.2015.19.5.1203.
  30. Zhou, W., Li, S., Huang, Z. and Jiang, L. (2016), "Distortional buckling of I-steel concrete composite beams in negative moment area", Steel Compos. Struct., 20(1), 57-70. http://dx.doi.org/10.12989/scs.2016.20.1.057.
  31. Zhou, X., He, Z., Chen, P., Li, J. and Li, Z. (2019), "Distortional buckling behavior and design consideration of castellated beams considering residual stresses", Proceedings of the Annual Stability Conference, Structural Stability Research Council, St. Louis, Missouri, April 2-5.
  32. Zirakian, T. and Showkati, H. (2006), "Distortional buckling of castellated beams", J. Constr. Steel Res., 62(9), 863-871. https://doi.org/10.1016/j.jcsr.2006.01.004.
  33. Zirakian, T. and Showkati, H. (2007), "Experiments on distortional buckling of I-beams", ASCE, J. Struct. Eng., 133(7):1009-1017.  https://doi.org/10.1061/(ASCE)0733-9445(2007)133:7(1009)