DOI QR코드

DOI QR Code

Probabilistic performance-based optimal design of low-rise eccentrically braced frames considering the connection types

  • 투고 : 2022.07.03
  • 심사 : 2023.03.06
  • 발행 : 2023.03.10

초록

In this study, the weight and the connections type layout of low-rise eccentrically braced frame (EBF) have been optimized based on performance-based design method. For this purpose, two objective functions were defined based on two different aspects on rigid connections, in one of which minimization and in the other one, maximization of the number of rigid connections was considered. These two objective functions seek to increase the area under the pushover curve, in addition to the reduction of the weight and selection of the optimum connections type layout. The performance of these objective functions was investigated in optimal design of a three-story eccentrically braced frame, using two meta-heuristic algorithms: Enhanced Colliding Bodies Optimization (ECBO) and Enhanced Vibrating Particles System (EVPS). Then, the reliability indices of the optimal designs for both objective functions were calculated for the story lateral drift limits using Monte-Carlo Simulation (MCS) method. Based on the reliability assessment results of the optimal designs and taking the three levels of safety into account, the final designs were selected and their specifications were compared.

키워드

과제정보

This study was supported by the Iran National Science Foundation (INSF) under Grant No. 99000342. This support is greatly appreciated.

참고문헌

  1. AISC Shapes Database (2010), AISC Steel Construction Manual, 14th Edition, American Institute of Steel Construction (AISC); Chicago, Illinois, USA.
  2. Alberdi, R., Murren, P. and Khandelwal, K. (2015), "Connection topology optimization of steel moment frames using metaheuristic algorithms", Eng. Struct., 100, 276-292. https://doi.org/10.1016/j.engstruct.2015.06.014.
  3. ASCE/SEI 41-17 (2017), Seismic evaluation and retrofit of existing buildings, American Society of Civil Engineers (ASCE); Reston, Virginia, USA.
  4. ATC-40 (1996), Seismic Evaluation and Retrofit of Concrete Buildings, Applied Technology Council (ATC); Redwood City, California, USA.
  5. Aydogdu, I., Carbas, S. and Akin, A. (2017), "Effect of Levy Flight on the discrete optimum design of steel skeletal structures using metaheuristics", Steel Compos. Struct., 24(1), 93-112. https://doi.org/10.12989/scs.2017.24.1.093.
  6. Bagherinejad, M.H. and Haghollahi, A. (2018), "Topology optimization of steel plate shear walls in the moment frames", Steel Compos. Struct., 29(6), 771-783. https://doi.org/10.12989/scs.2018.29.6.771.
  7. Banh, T.T. (2018), "Multi-material topology optimization of Reissner-Mindlin plates using MITC4", Steel Compos. Struct., 27(1), 27-33. https://doi.org/10.12989/scs.2018.27.1.027.
  8. Banh, T.T. and Lee, D. (2018), "Multi-material topology optimization design for continuum structures with crack patterns", Compos. Struct., 186(15), 193-209. https://doi.org/10.1016/j.compstruct.2017.11.088.
  9. Banh, T.T., Luu, N.G. and Lee, D. (2021a), "A non-homogeneous multi-material topology optimization approach for functionally graded structures with cracks", Compos. Struct., 273(24), 114230. https://doi.org/10.1016/j.compstruct.2021.114230.
  10. Banh, T.T., Luu, N.G., Lieu, Q.X., Lee, J., Kang, J. and Lee, D. (2021b), "Multiple bi-directional FGMs topology optimization approach with a preconditioned conjugate gradient multigrid", Steel Compos. Struct., 41(3), 385-402. https://doi.org/10.12989/scs.2021.41.3.385
  11. Basim, M.C. and Estekanchi, H.E. (2015), "Application of endurance time method in performance-based optimum design of structures", Struct. Saf., 56, 52-67. https://doi.org/10.1016/j.strusafe.2015.05.005.
  12. Beiraghi, H. and Freidoni, H. (2021), "Performance based assessment of shape memory alloy braces combined with buckling restrained braces in frames subjected to near field earthquakes", Steel Compos. Struct., 41(3), 353-367. https://doi.org/10.12989/scs.2021.41.3.353.
  13. Castaldo, P., Palazzo, B. and Della Vecchia, P. (2016), "Life-cycle cost and seismic reliability analysis of 3D systems equipped with FPS for different isolation degrees", Eng. Struct., 125, 349-363. https://doi.org/10.1016/j.engstruct.2016.06.056.
  14. Castaldo, P., Palazzo, B. and Ferrentino, T. (2017), "Seismic reliability-based ductility demand evaluation for inelastic base-isolated structures with friction pendulum devices", Earthq. Eng. Struct. Dyn., 46(8), 1245-1266. https://doi.org/10.1002/eqe.2854.
  15. Chao, S.-H. and Goel, S.C. (2006), "Performance-based seismic design of eccentrically braced frames using target drift and yield mechanism as performance criteria", Eng. J. Amer. Institute Steel Construct., 43(3), 173-200.
  16. Dimou, C.K. and Koumousis, V.K. (2009), "Reliability-Based Optimal Design of Truss Structures Using Particle Swarm Optimization", J. Comput. Civil Eng., 23(2), 100-109. https://doi.org/10.1061/(ASCE)0887-3801(2009)23:2(100).
  17. Fakhraddini, A., Hamed, S. and Fadaee, M.J. (2019), "Peak displacement patterns for the performance-based seismic design of steel eccentrically braced frames", Earthq. Eng. Eng. Vib., 18(2), 379-393. https://doi.org/10.1007/s11803-019-0510-0.
  18. Fathali, M.A. and Hoseini Vaez, S.R. (2020), "Optimum performance-based design of eccentrically braced frames", Eng. Struct., 202, 109857. https://doi.org/10.1016/j.engstruct.2019.109857.
  19. FEMA-356 (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency (FEMA); Washington, DC, USA.
  20. Fragiadakis, M., Lagaros, N.D. and Papadrakakis, M. (2006), "Performance-based multiobjective optimum design of steel structures considering life-cycle cost", Struct. Multidiscipl. Optim., 32(1), 1. https://doi.org/10.1007/s00158-006-0009-y.
  21. Gaxiola-Camacho, J.R., Azizsoltani, H., Villegas-Mercado, F.J. and Haldar, A. (2017), "A novel reliability technique for implementation of Performance-Based Seismic Design of structures", Eng. Struct., 142, 137-147. https://doi.org/10.1016/j.engstruct.2017.03.076.
  22. Gholizadeh, S., Danesh, M. and Gheyratmand, C. (2020), "A new Newton metaheuristic algorithm for discrete performance-based design optimization of steel moment frames", Comput. Struct., 234, 106250. https://doi.org/10.1016/j.compstruc.2020.106250.
  23. Gino, D., Castaldo, P., Giordano, L. and Mancini, G. (2021), "Model uncertainty in non-linear numerical analyses of slender reinforced concrete members", Struct. Concr., 22(2), 845-870. https://doi.org/10.1002/suco.202000600.
  24. Gong, Y., Xu, L. and Grierson, D.E. (2005), "Performance-based design sensitivity analysis of steel moment frames under earthquake loading", Int. J. Numer. Methods Eng., 63(9), 1229-1249. https://doi.org/10.1002/nme.1312.
  25. Grierson, D.E., Gong, Y. and Xu, L. (2006), "Optimal performance-based seismic design using modal pushover analysis", J. Earthq. Eng., 10(01), 73-96. https://doi.org/10.1142/S1363246906002335.
  26. Grzywinski, M. (2022), "Optimization of spatial truss towers based on Rao algorithms", Struct. Eng. Mech., 81(3), 367-378. https://doi.org/10.12989/sem.2022.81.3.367
  27. Hao, P., Wang, Y., Ma, R., Liu, H., Wang, B. and Li, G. (2019), "A new reliability-based design optimization framework using isogeometric analysis", Comput. Methods Appl. Mech. Eng., 345, 476-501. https://doi.org/10.1016/j.cma.2018.11.008.
  28. Ho-Huu, V., Nguyen-Thoi, T., Truong-Khac, T., Le-Anh, L. and Vo-Duy, T. (2018), "An improved differential evolution based on roulette wheel selection for shape and size optimization of truss structures with frequency constraints", Neural. Comput. Appl., 29(1), 167-185. https://doi.org/10.1007/s00521-016-2426-1.
  29. Hoseini Vaez, S.R., Mehanpour, H. and Fathali, M.A. (2020), "Reliability assessment of truss structures with natural frequency constraints using metaheuristic algorithms", J. Build. Eng., 28, 101065. https://doi.org/10.1016/j.jobe.2019.101065.
  30. Hoseini Vaez, S.R. and Shahmoradi Qomi, H. (2018), "Bar layout and weight optimization of special RC shear wall", Struct., 14, 153-163. https://doi.org/10.1016/j.istruc.2018.03.005.
  31. Hu, Z., Wang, Z., Su, C. and Ma, H. (2018), "Reliability Based Structural Topology Optimization Considering Non-stationary Stochastic Excitations", KSCE J. Civ. Eng., 22(3), 993-1001. https://doi.org/10.1007/s12205-018-0012-z
  32. Hung, C.-C. and Lu, W.-T. (2017), "A Performance-Based Design Method for Coupled Wall Structures", J. Earthq. Eng., 21(4), 579-603. https://doi.org/10.1080/13632469.2016.1172379.
  33. Kaveh, A. and Farhoudi, N. (2016), "Dolphin monitoring for enhancing metaheuristic algorithms: Layout optimization of braced frames", Comput. Struct., 165, 1-9. https://doi.org/10.1016/j.compstruc.2015.11.012.
  34. Kaveh, A., Ghafari, M.H. and Gholipour, Y. (2017), "Optimum seismic design of steel frames considering the connection types", J. Constr. Steel Res., 130, 79-87. https://doi.org/10.1016/j.jcsr.2016.12.002.
  35. Kaveh, A., Hoseini Vaez, S.R. and Hosseini, P. (2019), "Enhanced vibrating particles system algorithm for damage identification of truss structures", Sci. Iran., 26(1), 246-256. https://doi.org/10.24200/sci.2017.4265.
  36. Kaveh, A., Hoseini Vaez, S.R., Hosseini, P. and Ezzati, E. (2018), "Layout optimization of planar braced frames using modified dolphin monitoring operator", Period. Polytech., Civ. Eng., 62(3), 717-731. https://doi.org/10.3311/PPci.11654.
  37. Kaveh, A. and Ilchi Ghazaan, M. (2014), "Enhanced colliding bodies optimization for design problems with continuous and discrete variables", Adv. Eng. Softw., 77, 66-75. https://doi.org/10.1016/j.advengsoft.2014.08.003.
  38. Kaveh, A. and Ilchi Ghazaan, M. (2017), "A new meta-heuristic algorithm: vibrating particles system", Sci. Iran., 24(2), 551-566. https://doi.org/10.24200/sci.2017.2417.
  39. Kaveh, A., Laknejadi, K. and Alinejad, B. (2012), "Performancebased multi-objective optimization of large steel structures", Acta Mech., 223(2), 355-369. https://doi.org/10.1007/s00707- 011-0564-1.
  40. Kaveh, A. and Mahdavi, V. (2014), "Colliding bodies optimization: a novel meta-heuristic method", Comput. Struct., 139, 18-27. https://doi.org/10.1016/j.compstruc.2014.04.005.
  41. Kaveh, A. and Mahdavi, V.R. (2015), "Colliding-Bodies Optimization for Truss Optimization with Multiple Frequency Constraints", J. Comput. Civil Eng., 29(5), 04014078. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000402.
  42. Kaveh, A. and Nasrollahi, A. (2014), "Performance-based seismic design of steel frames utilizing charged system search optimization", Appl. Soft. Comput., 22, 213-221. https://doi.org/10.1016/j.asoc.2014.05.012.
  43. Keshtegar, B. and Chakraborty, S. (2018), "A hybrid self-adaptive conjugate first order reliability method for robust structural reliability analysis", Appl. Math. Model., 53, 319-332. https://doi.org/10.1016/j.apm.2017.09.017.
  44. Keshtegar, B. and Hao, P. (2018), "A hybrid descent mean value for accurate and efficient performance measure approach of reliability-based design optimization", Comput. Methods Appl. Mech. Eng., 336, 237-259. https://doi.org/10.1016/j.cma.2018.03.006.
  45. Keshtegar, B. and Kolahchi, R. (2018), "Reliability analysis-based conjugate map of beams reinforced by ZnO nanoparticles using sinusoidal shear deformation theory", Steel Compos. Struct., 28(2), 195-207. https://doi.org/10.12989/scs.2018.28.2.195.
  46. Lieu, Q.X., Do, D.T.T. and Lee, J. (2018), "An adaptive hybrid evolutionary firefly algorithm for shape and size optimization of truss structures with frequency constraints", Comput. Struct., 195, 99-112. https://doi.org/10.1016/j.compstruc.2017.06.016.
  47. Liu, Y., Lu, N. and Yin, X. (2016), "A Hybrid Method for Structural System Reliability-Based Design Optimization and its Application to Trusses", Qual. Reliab. Eng. Int., 32(2), 595-608. https://doi.org/10.1002/qre.1775.
  48. Maddah, M.M., Eshghi, S. and Garakaninezhad, A. (2022), "A new optimized performance-based methodology for seismic collapse capacity assessment of moment resisting frames", Struct. Eng. Mech., 82(5), 667-678. https://doi.org/10.12989/sem.2022.82.5.667.
  49. Mansouri, I., Soori, S., Amraie, H., Hu, J.W. and Shahbazi, S. (2018), "Performance based design optimum of CBFs using bee colony algorithm", Steel Compos. Struct., 27(5), 613-622.
  50. Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2005), OpenSees Command Language Manual, Pacific Earthquake Engineering Research (PEER) Center, Berkeley, California, USA.
  51. Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2016), Open system for earthquake engineering simulation (OpenSees): version 2.5.0, Pacific Earthquake Engineering Research (PEER) Center, University of California, Berkeley, California, USA.
  52. Meng, Z., Yang, D., Zhou, H. and Wang, B.P. (2018), "Convergence control of single loop approach for reliability-based design optimization", Struct. Multidiscipl. Optim., 57(3), 1079-1091. https://doi.org/10.1007/s00158-017-1796-z.
  53. Metropolis, N. and Ulam, S. (1949), "The monte carlo method", J. Am. Stat. Assoc., 44(247), 335-341. https://doi.org/10.1080/01621459.1949.10483310.
  54. Qiu, C.-X. and Zhu, S. (2017), "Performance-based seismic design of self-centering steel frames with SMA-based braces", Eng. Struct., 130, 67-82. https://doi.org/10.1016/j.engstruct.2016.09.051.
  55. Rahami, H., Mohebian, P. and Mousavi, M. (2017), "Performance-based connection topology optimization of unbraced and X-braced steel frames", Int. J. Optim. Civil Eng., 7(3), 451-468.
  56. Rashki, M., Miri, M. and Moghaddam, M.A. (2012), "A new efficient simulation method to approximate the probability of failure and most probable point", Struct. Saf., 39, 22-29. https://doi.org/10.1016/j.strusafe.2012.06.003.
  57. Shoeibi, S., Kafi, M.A. and Gholhaki, M. (2017), "New performance-based seismic design method for structures with structural fuse system", Eng. Struct., 132, 745-760. https://doi.org/10.1016/j.engstruct.2016.12.002.
  58. Taherinasab, M. and Aghakouchak, A.A. (2020), "Parametric study on probabilistic local seismic demand of IBBC connection using finite element reliability method", Steel Compos. Struct., 37(2), 151-173. https://doi.org/10.12989/scs.2020.37.2.151.
  59. Talatahari, S., Hosseini, A., Mirghaderi, S.R. and Rezazadeh, F. (2014), "Optimum Performance-Based Seismic Design Using a Hybrid Optimization Algorithm", Math. Probl. Eng., 2014, 8. https://doi.org/10.1155/2014/693128.
  60. Techasen, T., Wansasueb, K., Panagant, N., Pholdee, N. and Bureerat, S. (2019), "Simultaneous topology, shape, and size optimization of trusses, taking account of uncertainties using multi-objective evolutionary algorithms", Eng. Comput., 35(2), 721-740. https://doi.org/10.1007/s00366-018-0629-z.
  61. Veladi, H. (2014), "Performance-Based Seismic Design of Steel Frames Utilizing Colliding Bodies Algorithm", Sci. World J., 2014, 6. https://doi.org/10.1155/2014/240952.
  62. Yazdani, H., Khatibinia, M., Gharehbaghi, S. and Hatami, K. (2017), "Probabilistic Performance-Based Optimum Seismic Design of RC Structures Considering Soil-Structure Interaction Effects", ASCE ASME J. Risk Uncertain. Eng. Syst. A. Civ. Eng., 3(2), G4016004. https://doi.org/10.1061/AJRUA6.0000880.
  63. Yu, Z., Sun, Z., Guo, F., Cao, R. and Wang, J. (2022), "A new structural reliability analysis method based on PC-Kriging and adaptive sampling region", Struct. Eng. Mech., 82(3), 271-282. https://doi.org/10.12989/sem.2022.82.3.271.
  64. Zhang, L., Zhang, J., You, L. and Zhou, S. (2019), "Reliability analysis of structures based on a probability-uncertainty hybrid model", Qual. Reliab. Eng. Int., 35(1), 263-279. https://doi.org/10.1002/qre.2396.
  65. Zhao, Q., Chen, X. and Lin, Y. (2013). "Reliability-Based Topology Optimization of Control Arm of Suspension for Lightweight Design", Proceedings of the FISITA 2012 World Automotive Congress, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33738-3_17.
  66. Zhong, C., Wang, M., Dang, C. and Ke, W. (2020), "Structural reliability assessment by salp swarm algorithm-based FORM", Qual. Reliab. Eng. Int., 36(4), 1224-1244. https://doi.org/10.1002/qre.2626.
  67. Zhu, M., Yang, Y., Guest, J.K. and Shields, M.D. (2017), "Topology optimization for linear stationary stochastic dynamics: Applications to frame structures", Struct. Saf., 67, 116-131. https://doi.org/10.1016/j.strusafe.2017.04.004.