DOI QR코드

DOI QR Code

Nonlinear thermal post-buckling analysis of graphene platelets reinforced metal foams plates with initial geometrical imperfection

  • Yin-Ping Li (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Gui-Lin She (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Lei-Lei Gan (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Hai-Bo Liu (College of Mechanical and Electric Engineering, Hunan University of Science and Technology)
  • 투고 : 2022.11.23
  • 심사 : 2023.02.13
  • 발행 : 2023.03.10

초록

Although some scholars have studied the thermal post-buckling of graphene platelets strengthened metal foams (GPLRMFs) plates, they have not considered the influence of initial geometrical imperfection. Inspired by this fact, the present paper studies the thermal post-buckling characteristics of GPLRMFs plates with initial geometrical imperfection. Three kinds of graphene platelets (GPLs) distribution patterns including three patterns have been considered. The governing equations are derived according to the first-order plate theory and solved with the help of the Galerkin method. According to the comparison with published paper, the accuracy and correctness of the present research are verified. In the end, the effects of material properties and initial geometrical imperfection on the thermal post-buckling response of the GPLRMFs plates are examined. It can be found that the presence of initial geometrical imperfection reduces the thermal post-buckling strength. In addition, the present study indicates that GPL-A pattern is best way to improve thermal post-buckling strength for GPLRMFs plates, and the presence of foams can improve the thermal post-buckling strength of GPLRMFs plates, the Foam- II and Foam- I patterns have the lowest and highest thermal post-buckling strength. Our research can provide guidance for the thermal stability analysis of GPLRMFs plates.

키워드

과제정보

This article was supported by Chongqing University Talent Introduction Project (No. 02090025020040), and Fundamental Research Funds for the Central Universities (No. 2022CDJXY-005).

참고문헌

  1. Alazwari, M.A., Daikh, A.A., Houari, M.S., Tounsi, A. and Eltaher, M.A. (2021), "On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations", Steel. Compos. Struct., 40(3), 389-404. https://doi.org/10.12989/scs.2021.40.3.389.
  2. Anirudh, B., Ganapathi, M., Anant, C. and Polit, O. (2019), "A comprehensive analysis of porous graphene-reinforced curved beams by finite element approach using higher-order structural theory: Bending, vibration and buckling", Compos. Struct., 222, 110899. http://dx.doi.org/10.1016/j.compstruct.2019.110899.
  3. Assie, A.E., Mohamed, S.A., Shanab, R.A., Abo-bakr, R.M. and Eltaher, M.A. (2023), "Static buckling of 2D FG porous plates resting on elastic foundation based on unified shear theories", J. Appl. Comput. Mech., 9(1), 239-258. https://doi.org/10.22055/jacm.2022.41265.3723.
  4. Babaei, H. (2021), "On frequency response of FG-CNT reinforced composite pipes in thermally pre/post buckled configurations", Compos. Struct., 276, 114467. https://doi.org/10.1016/j.compstruct.2021.114467.
  5. Babaei, H. (2022a), "Nonlinear analysis of size‑dependent frequencies in porous FG curved nanotubes based on nonlocal strain gradient theory", Eng. Struct., 38, S1717-S1734. https://doi.org/10.1007/s00366-021-01317-7.
  6. Babaei, H. (2022b), "Free vibration and snap-through instability of FG-CNTRC shallow arches supported on nonlinear elastic foundation", Appl. Math. Comput., 413, 126606. https://doi.org/10.1016/j.amc.2021.126606.
  7. Babaei, H. and Eslami, M.R. (2021a), "Nonlinear analysis of thermal-mechanical coupling bending of FGP infinite length cylindrical panels based on PNS and NSGT", Appl. Math. Model., 91, 1061-1080. https://doi.org/10.1016/j.apm.2020.10.004
  8. Babaei, H. and Eslami, M.R. (2021b), "Nonlinear analysis of thermal-mechanical coupling bending of clamped FG porous curved microtubes", J. Therm. Stresses, 44(4), 409-432. https://doi.org/10.1080/01495739.2020.1870417.
  9. Bakhtiari-Nejad, F., Shamshirsaz, M., Mohammadzadeh, M. and Samie, S. (2014), "Free vibration analysis of FG skew plates based on second order shear deformation theory", Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 8, V008T11A024. https://doi.org/10.1115/DETC2014-34085.
  10. Barati, M.R. and Zenkour, A.M. (2017), "Post-buckling analysis of refined shear deformable graphene platelet reinforced beams with porosities and geometrical imperfection", Compos. Struct., 181, http://dx.doi.org/10.1016/j.compstruct.2017.08.082.
  11. Basha, M., Daikh, A.A., Melaibari, A., Wagih, A., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A., and Eltaher, M.A. (2022), "Nonlocal strain gradient theory for buckling and bending of FG-GRNC laminated sandwich plates", Steel. Compos. Struct., 43(5), 639-660. https://doi.org/10.12989/scs.2022.43.5.639
  12. Chen, D., Yang, J. and Kitipornchai, S. (2017), "Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams", Compos. Sci. Technol., 142, 235-245. http://dx.doi.org/10.1016/j.compscitech.2017.02.008.
  13. Chen, X., Zhao, J.L., She, G.L., Jing, Y., Luo, J. and Pu, H.Y. (2022a), "On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment", Eur. Phys. J. Plus., 137(10), 1158. https://doi.org/10.1140/epjp/s13360-022-03234-0.
  14. Chen, X., Zhao, J.L., She, G.L., Jing, Y., Pu, H.Y. and Luo, J. (2022b), "Nonlinear free vibration analysis of functionally graded carbon nanotube reinforced fluid-conveying pipe in thermal environment", Steel. Compos. Struct., 45(5), 641-652. https://doi.org/10.12989/scs.2022.45.5.641.
  15. Cho, J.R. (2022), "Buckling analysis of functionally graded plates resting on elastic foundation by natural element method", Steel Compos. Struct., 44(2), 157-167. https://doi.org/10.12989/scs.2022.44.2.157.
  16. Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. http://dx.doi.org/10.12989/sem.2021.80.1.063.
  17. Ding, H.X., She, G.L. and Zhang, Y.W. (2022a), "Nonlinear buckling and resonances of functionally graded fluid-conveying pipes with initial geometric imperfection", Eur. Phys. J. Plus, 137,1329. https://doi.org/10.1140/epjp/s13360-022-03570-1.
  18. Ding, H.X., Zhang, Y.W. and She, G.L. (2022b), "On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations", Comput. Concrete, 30(6), 433-443. https://doi.org/10.12989/cac.2022.30.6.433.
  19. Eipakchi, H. and Nasrekani, F.M. (2022), "Nonlinear static analysis of composite cylinders with metamaterial core layer, adjustable Poisson's ratio, and non-uniform thickness", Steel Compos. Struct., 43(2), 241-256. https://doi.org/10.12989/scs.2022.43.2.241.
  20. Eltaher, M.A., Mohamed, N., Mohamed, S.A. and Seddek, L.F. (2019a), "Periodic and nonperiodic modes of postbuckling and nonlinear vibration of beams attached to nonlinear foundations", Appl. Math. Model., 75, 414-445. https://doi.org/10.1016/j.apm.2019.05.026
  21. Eltaher, M.A., Mohamed, N., Mohamed, S.A. and Seddek, L.F. (2019b), "Postbuckling of curved carbon nanotubes using energy equivalent model", J. Nano Res., 57, 136-157. https://doi.org/10.4028/www.scientific.net/JNanoR.57.136.
  22. Emam, S.A., Eltaher, M.A., Khater, M.E. and Abdalla, W.S. (2018), "Postbuckling and free vibration of multilayer imperfect nanobeams under a pre-stress load", Appl. Sci., 8(11), 2238. https://doi.org/10.3390/app8112238.
  23. Farshid, A. (2022), "Dynamic buckling of functionally graded multilayer graphene nanocomposite annular plate under different boundary conditions in thermal environment", Eng. Comput., 38, 583-606. http://dx.doi.org/10.1007/s00366-020-01169-7.
  24. Gao, K., Do, D.M., Li, R., Kitipornchai, S. and Yang, J. (2020), "Probabilistic stability analysis of functionally graded graphene reinforced porous beams", Aerosp. Sci. Technol., 98, 105738. http://dx.doi.org/10.1016/j.ast.2020.105738.
  25. Gao, K., Gao, W., Chen, D. and Yang, J. (2018), "Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation", Compos. Struct., 204, 831-846. https://doi.org/10.1016/j.compstruct.2018.08.013.
  26. Hendi, A., Eltaher, M.A, Mohamed, S.A. and Attia, M. (2022), "Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory", Steel Compos. Struct., 41(6), 787-802. http://doi.org/DOI10.12989/scs.2021.41.6.787.
  27. Javani, M., Kiani, Y. and Eslami, M.R. (2020), "Thermal buckling of FG graphene platelet reinforced composite annular sector plates", Thin Wall. Struct., 148, 106589. http://dx.doi.org/10.1016/j.tws.2019.106589.
  28. Karimiasl, M., Ebrahimi, F. and Akgoz, B. (2019), "Buckling and post-buckling responses of smart doubly curved composite shallow shells embedded in SMA fiber under hygro-thermal loading", Compos.Struct., 148, 110988. http://dx.doi.org/10.1016/j.compstruct.2019.110988.
  29. Keleshteri, M.M. and Jelovica, J. (2022a), "Analytical assessment of nonlinear forced vibration of functionally graded porous higher order hinged beams", Compos. Struct., 298, 115994. https://doi.org/10.1016/j.compstruct.2022.115994.
  30. Keleshteri, M.M. and Jelovica, J. (2022b), "Analytical solution for vibration and buckling of cylindrical sandwich panels with improved FG metal foam core", Eng. Struct., 266, 114580. https://doi.org/10.1016/j.engstruct.2022.114580
  31. Keleshteri, M.M. and Jelovica, J. (2022c), "Nonlinear vibration analysis of bidirectional porous beams", Eng. Comput., 38, 5033-5049. https://doi.org/10.1007/s00366-021-01553-x.
  32. Keleshteri, M.M. and Jelovica, J. (2022d), "Beam theory reformulation to implement various boundary conditions for generalized differential quadrature method", Eng. Struct., 252, 113666. https://doi.org/10.1016/j.engstruct.2021.113666.
  33. Khalaf, B.S. and Faleh, R.M. (2019), "Analyzing nonlinear mechanical-thermal buckling of imperfect micro-scale beam made of graded graphene reinforced composites", Adv. Mater. Res.-Kr., 8(3), 219-235. http://dx.doi.org/10.12989/amr.2019.8.3.219.
  34. Kiani, Y. (2020), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Therm. Stresses., 43(1), 90-108. http://dx.doi.org/10.1080/01495739.2019.1673687.
  35. Li, Z., Chen, Y., Zheng, J. and Sun, Q. (2020a), "Thermal-elastic buckling of the arch-shaped structures with FGP aluminum reinforced by composite graphene platelets", Thin Wall. Struct., 157, 107142. http://dx.doi.org/10.1016/j.tws.2020.107142.
  36. Li, Z., Zheng, J. and Zhang, Z. (2019b), "Mechanics of the confined functionally graded porous arch reinforced by graphene platelets", Eng. Struct., 201, 109817. http://dx.doi.org/10.1016/j.engstruct.2019.109817.
  37. Li, Z., Zheng, J. and Zhang, Z. (2020), "Thermal nonlinear performance of the porous metal cylinders with composite graphene nanofiller reinforcement encased in elastic mediums", Int. J. Mech. Sci., 181, 105698. http://dx.doi.org/10.1016/j.ijmecsci.2020.105698.
  38. Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
  39. Liu, Y.F., Hu, W.Y., Zhu, R., Safaei, B., Qin, Z.Y. and Chu, F.L. (2022), "Dynamic responses of corrugated cylindrical shells subjected to nonlinear low-velocity impact," Aerosp. Sci. Technol., 121, 107321.https://doi.org/10.1016/j.ast.2021.107321.
  40. Mahani, R.B., Eyvazian, A., Musharavati F.F., Sebaey, T.A. and Talebizadehsardari, P. (2022), "Thermal buckling of laminated Nano-Composite conical shell reinforced with graphene platelets", Thin Wall. Struct., 155, 106589. http://dx.doi.org/10.1016/j.tws.2019.106589.
  41. Mohammadi, H. (2021), "Isogeometric thermal buckling analysis of GPL reinforced composite laminated folded plates", Compos. Struct., 255, 113905. http://dx.doi.org/10.1016/j.engstruct.2022.113905.
  42. Mohammadzadeh-Keleshteri, M., Samie-Anarestani, S. and Assadi, A. (2017), "Large deformation analysis of single-crystalline nanoplates with cubic anisotropy", Acta Mech., 228, 3345-3368. http://dx.doi.org/10.1007/s00707-017-1862-z.
  43. Mohamed, N., Mohamed, S.A., and Eltaher, M.A. (2021), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 37(4), 2823-2836. http://dx.doi.org/10.1007/s00366-020-00976-2.
  44. Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-750. http://dx.doi.org/10.12989/sem.2019.70.6.737.
  45. Melaibari, A., Mohamed, S.A., Assie, A.E., Shanab, R.A. and Eltaher, M.A. (2023), "Static response of 2D FG porous plates resting on elastic foundation using midplane and neutral surfaces with movable constraints", Mathematics, 10(24), 4784. http://dx.doi.org/10.3390/math10244784
  46. She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct., 37(1), 27-35. https://doi.org/10.12989/scs.2020.37.1.027.
  47. She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Thermal Stresses., 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
  48. She, G.L. and Ding, H.X. (2023), "Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Acta Mech. Sin., 39, 522392. https://doi.org/10.1007/s10409-022-22392-x.
  49. She, G.L., Ding, H.X., and Zhang, Y.W. (2022), "Wave propagation in a FG circular plate via the physical neutral surface concept", Struct. Eng. Mech., 82(2), 225-232. https://doi.org/10.12989/sem.2022.82.2.225
  50. She, G.L. and Li, Y.P. (2022), "Wave propagation in an FG circular plate in thermal environment", Geomech. Eng., 31(6), 615-622. https://doi.org/10.12989/gae.2022.31.6.615.
  51. She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
  52. She, G.L., Liu, H.B. and Karami, B. (2020), "On resonance behavior of porous FG curved nanobeams", Steel Compos. Struct., 36(2), 179-186. https://doi.org/10.12989/scs.2020.36.2.179.
  53. She, G.L., Ren, Y.R. and Yan, K.,M. (2019a), "On snap-buckling of porous FG curved nanobeams", Acta Astronautica, 161, 475-484. https://doi.org/10.1016/j.actaastro.2019.04.010.
  54. She, G.L., Ren, Y.R., and Yuan, F.G. (2019b), "Hygro-thermal wave propagation in functionally graded double-layered nanotubes systems", Steel Compos. Struct., 31(6), 641-653. https://doi.org/10.12989/scs.2019.31.6.641.
  55. She, G.L., Yuan, F.G., Ren, Y.R. (2017), "Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory", Appl. Math. Model., 47, 340-357. https://doi.org/10.1016/j.apm.2017.03.014.
  56. Shen, H.S. (2007), "Thermal postbuckling behavior of shear deformable FGM plates", Int. J. Mech. Sci., 49(4), 466-478. https://doi.org/10.1016/j.ijmecsci.2006.09.011.
  57. Shen, H.S. and Xiang, Y. (2020), "Postbuckling behavior of functionally graded graphene-reinforced composite laminated cylindrical shells under axial compression in thermal environments", 330, 64-82. https://doi.org/10.1016/j.cma.2017.10.022.
  58. Sobhy, M., Abazid, M.A., and Al Mukahal, F.H.H. (2022), "Electrothermal buckling of FG graphene platelets-strengthened piezoelectric beams under humid conditions", Adv. Mech. Eng., 14(4), 16878132221091005. http://dx.doi.org/10.1177/16878132221091005.
  59. Sun, J., Zhu, S., Tong, Z., Zhou, Z., and Xu ,X.( 2020), "Post-buckling analysis of functionally graded multilayer graphene platelet reinforced composite cylindrical shells under axial compression", 476, 20200506. http://dx.doi.org/10.1098/rspa.2020.0506.
  60. Wang, Y. and Wu, D. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aerosp. Sci. Technol., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003.
  61. Wang, Y., Xie, K., Fu, T. and Shi, C. (2019), "Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses", Compos. Struct., 209, 928-939. https://doi.org/10.1016/j.compstruct.2018.11.014.
  62. Wang, Y.W. and Zhang, W. (2022), "On the thermal buckling and postbuckling responses of temperature-dependent graphene platelets reinforced porous nanocomposite beams", Compos. Struct., 296, 115880. http://dx.doi.org/10.1016/j.compstruct.2022.115880.
  63. Wu, H.L., Kitipornchai, S. and Yang, J. (2017), "Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates", Mater.Des., 132, 430441. http://dx.doi.org/10.1016/j.matdes.2017.07.025.
  64. Xi, F. (2022), "Vibrational characteristics of sandwich annular plates with damaged core and FG face sheets", Steel Compos. Struct., 44(1), 65-79. https://doi.org/10.12989/scs.2022.44.1.065.
  65. Xu, J.Q. and She, G.L. (2022), "Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection", Geomech. Eng., 31(3), 329-337. https://doi.org/10.12989/gae.2022.31.3.329.
  66. Xu, M.M., Li ,X.P., Luo ,Y., Wang, G., Liu ,T., Huang ,J. and Yan, G. (2022), "Thermal buckling of graphene platelets toughening sandwich functionally graded porous plate with temperature-dependent properties", Int. J Appl. Mech., 12(8), 2050089. http://dx.doi.org/10.1142/S1758825120500891.
  67. Xu, M.N., Li, X.P., Luo, Y., Wang, G., Guo, Y.H., Liu, T.T., Huang, J.H. and Yan, G. (2020), "Thermal buckling of graphene platelets toughening sandwich functionally graded porous plate with temperature dependent properties", Int. J. Appl. Mech., 12, 2050089. http://dx.doi.org/10.1142/S1758825120500891.
  68. Yang, B., Yang, J. and Kitipornchai, S. (2017), "Thermoelastic analysis of functionally graded graphene reinforced rectangular plates based on 3D elasticity", Meccanica., 52(10), 2275-2292. https://doi.org/10.1007/s11012-016-0579-8.
  69. Yas, M.H. and Rahimi, S. (2020), "Thermal buckling analysis of porous functionally graded nanocomposite beams reinforced by graphene platelets using Generalized differential quadrature method", Aerosp. Sci. Technol., 107, 106261. http://dx.doi.org/10.1016/j.ast.2020.106261.
  70. Yu, H.Y. and Liu, F. (2021), "Snap-through analysis of thermally postbuckled graphene platelet reinforced composite beam", Mech. Design Struct. Machines, 3, 1875332. https://doi.org/10.1080/15397734.
  71. Zhang, Y.W., Ding, H.X. and She, G.L. (2022), "Snap-buckling and resonance of functionally graded graphene reinforced composites curved beams resting on elastic foundations in thermal environment", J. Therm. Stresses, 45(12), 1029-1042. https://doi.org/10.1080/01495739.2022.2125137.
  72. Zhang, Y.W. and She, G.L. (2022), "Wave propagation and vibration of FG pipes conveying hot fluid", Steel. Compos, Struct., 42(3), 397-405. https://doi.org/10.12989/scs.2022.42.3.397.
  73. Zhang, Y.W. and She, G.L. (2023), "Nonlinear low-velocity impact response of graphene platelet-reinforced metal foam cylindrical shells under axial motion with geometrical imperfection", Nonlinear Dynamics. https://doi.org/10.1007/s11071-022-08186-9.
  74. Zhang, Y.W., Ding, H.X. and She, G.L. (2023a), "Wave propagation in spherical and cylindrical panels reinforced with carbon nanotubes", Steel Compos. Struct., 46(1), 133-141. https://doi.org/10.12989/scs.2023.46.1.133.
  75. Zhang, Y.W., She, G.L., and Ding, H.X. (2023b), "Nonlinear resonance of graphene platelets reinforced metal foams plates under axial motion with geometric imperfections", Eur. J. Mech. A-Solid., 98, 104887. https://doi.org/10.1016/j.euromechsol.2022.104887.
  76. Zhang, Y.Y., Wang, X.Y., Zhang, X., Shen, H.M., and She, G.L. (2021), "On snap-buckling of FG-CNTRC curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. https://doi.org/10.12989/scs.2021.38.3.293.
  77. Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y. and Luo, J. (2022a), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel. Compos. Struct., 43(6), 797-808. https://doi.org/10.12989/scs.2022.43.6.797.
  78. Zhao, J.L., She, G.L., Wu, F., Yuan, S.J., Bai, R.Q., Pu, H.Y., Wang, S.L. and Luo, J. (2022b), "Guided waves of porous FG nanoplates with four edges clamped", Adv. Nano. Res., 13(5), 465-474. https://10.12989/anr.2022.13.5.465.