참고문헌
- Akbas, S.D. (2013), "Free vibration characteristics of edge cracked functionally graded beams by using finite element method", Int. J. Eng. Trends Technol., 4(10), 4590-4597.
- Akbas, S.D. (2014), "Free vibration of axially functionally graded beams in thermal environment", Int. J. Eng. Appl. Sci., 6(3), 37-51. https://doi.org/10.24107/ijeas.251224.
- Akbas, S.D. (2016), "Static analysis of a nano plate by using generalized differential quadrature method", Int. J. Eng. Appl. Sci., 8(2), 30-39. https://doi.org/10.24107/ijeas.252143.
- Akbas, S.D. (2018a), "Nonlinear thermal displacements of laminated composite beams", Coupled Syst. Mech., 7(6), 691-705. https://doi.org/10.12989/csm.2018.7.6.691.
- Akbas, S.D. (2018b), "Geometrically nonlinear analysis of a laminated composite beam", Struct. Eng. Mech. Int. J., 66(1), 27-36. http://doi.org/10.12989/sem.2018.66.1.027.
- Akbas, S.D. (2018c), "Post-buckling responses of a laminated composite beam", Steel. Compos. Struct., 26(6), 733-743. http://doi.org/10.12989/scs.2018.26.6.733.
- Akbas, S.D. (2018d), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech., 67(4), 337-346. http://dx.doi.org/10.12989/sem.2018.67.4.337.
- Akbas, S.D. (2019a), "Hygrothermal post-buckling analysis of laminated composite beams", Int. J. Appl. Mech., 11(01), 1950009. https://doi.org/10.1142/S1758825119500091.
- Akbas, S.D. (2019b), "Nonlinear static analysis of laminated composite beams under hygro-thermal effect", Struct. Eng. Mech., 72(4), 433-441. http://dx.doi.org/10.12989/sem.2019.72.4.433.
- Akbas, S.D. (2019c), "Longitudinal forced vibration analysis of porous a nanorod", Muhendislik Bilimleri ve Tasarim Dergisi, 7(4), 736-743. https://doi.org/10.21923/jesd.553328.
- Akbas, S.D. (2019d), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 5(2), 477-485. https://doi.org/10.22059/JCAMECH.2019.281285.392.
- Akbas, S.D. (2020a), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.4.277.
- Akbas, S. D. (2020b), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos. Struct., 35(6), 729-737. https://doi.org/10.12989/scs.2020.35.6.729.
- Akbas, S.D. (2020c), "Dynamic analysis of a laminated composite beam under harmonic load", Coupled Syst. Mech., http://doi.org/10.12989/csm.2020.9.6.563.
- Akbas, S.D. (2021), "Dynamic analysis of axially functionally graded porous beams under a moving load" Steel Compos. Struct., 39(6), 811-821. https://doi.org/10.12989/scs.2021.39.6.811.
- Akbas, S.D. (2022), "Moving-load dynamic analysis of AFG beams under thermal effect", Steel Compos. Struct., 42(5), 649-655. https://doi.org/10.12989/scs.2022.42.5.649.
- Akbas S.D. (2023), "Size dependent vibration of laminated micro beams under moving load", Steel Compos. Struct., 46(2), 253-261. https://doi.org/10.12989/scs.2023.46.2.253.
- Alimoradzadeh, M., Salehi, M. and Esfarjani, S.M. (2019), "Nonlinear dynamic response of an axially functionally graded (AFG) beam resting on nonlinear elastic foundation subjected to moving load", Nonlinear Eng., 8(1), 250-260. https://doi.org/10.1515/nleng-2018-0051.
- Alimoradzadeh, M., Salehi, M. and Esfarjani, S.M. (2020), "Nonlinear vibration analysis of axially functionally graded microbeams based on nonlinear elastic foundation using modified couple stress theory", Periodica Polytechnica Mech. Eng., 64(2), 97-108. https://doi.org/10.3311/PPme.11684.
- Alimoradzadeh M. and Akbas S.D. (2021a), "Superharmonic and subharmonic resonances of atomic force microscope subjected to crack failure mode based on the modified couple stress theory", Europ. Phys. J. Plus, 136(5), 536. https://doi.org/10.1140/epjp/s13360-021-01539-0.
- Alimoradzadeh, M., Akbas, S.D. and Esfrajani, S.M. (2021b), "Nonlinear dynamic and stability of a beam resting on the nonlinear elastic foundation under thermal effect based on the finite strain theory", Struct. Eng. Mech., 80(3), 275-284. https://doi.org/10.12989/sem.2021.80.3.275.
- Alimoradzadeh M. and Akbas S.D. (2022a), "Superharmonic and subharmonic resonances of a carbon nanotube-reinforced composite beam", Adv. Nano Res., 12(4), 353-363. https://doi.org/10.12989/anr.2022.12.4.353.
- Alimoradzadeh M. and Akbas S.D. (2022b), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81(6), 705-714. https://doi.org/10.12989/sem.2022.81.6.705.
- Alimoradzadeh M. and Akbas S.D. (2022c), "Nonlinear dynamic responses of cracked atomic force microscopes", Struct. Eng. Mech., 82(6), 747-756. https://doi.org/10.12989/sem.2022.82.6.747.
- Alimoradzade M. and Akbas S.D. (2022d), "Nonlinear thermal vibration of FGM beams resting on nonlinear viscoelastic foundation", Steel Compos. Struct., 44(4), 543-553. https://doi.org/10.12989/scs.2022.44.4.543.
- Alimoradzadeh M. and Akbas S.D. (2023a), "Nonlinear free vibration analysis of a composite beam reinforced by carbon nanotubes", Steel Compos. Struct., 46(3), 335-344. https://doi.org/10.12989/scs.2023.46.3.335.
- Alimoradzadeh M. and Akbas S.D. (2023b), "Nonlinear vibration analysis of carbon nanotube-reinforced composite beams resting on nonlinear viscoelastic foundation", Geomech. Eng., 32(2), 125-135. https://doi.org/10.12989/gae.2023.32.2.125.
- Ansari, M., Esmailzadeh, E. and Younesian, D. (2010), "Internal-external resonance of beams on non-linear viscoelastic foundation traversed by moving load", Nonlinear Dyn., 61(1), 163-182. https://doi.org/10.1007/s11071-009-9639-0.
- Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S. and Tounsi, A. (2022), "Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory", Eng. Comput., 38, 4051-4072. https://doi.org/10.1007/s00366-021-01382-y.
- Asadi, H. and Beheshti, A.R. (2018), "On the nonlinear dynamic responses of FG-CNTRC beams exposed to aerothermal loads using third-order piston theory", Acta Mechanica, 229(6), 2413-2430. https://doi.org/10.1007/s00707-018-2121-7.
- Babu Arumugam, A., Rajamohan, V., Bandaru, N., Sudhagar, P.E. and Kumbhar, S.G. (2019), "Vibration analysis of a carbon nanotube reinforced uniform and tapered composite beams", Archives Acoustics, 44(02), 309-320. http://dx.doi.org/10.24425/aoa.2019.128494.
- Belbachir, N., Draiche, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of antisymmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081.
- Bourada, F., Bousahla, A.A., Tounsi, A., Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concrete, 25(6), 485-495. https://doi.org/10.12989/cac.2020.25.6.485.
- Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.
- Fattahi, A.M. and Safaei, B. (2017), "Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions", Microsyst. Technol., 23(10), 5079-5091. http://dx.doi.org/10.1007/s00542-017-3345-5.
- Fernandes, R., Mousavi, S.M. and El-Borgi, S. (2016), "Free and forced vibration nonlinear analysis of a microbeam using finite strain and velocity gradients theory", Acta Mechanica, 227(9), 2657-2670. https://doi.org/10.1007/s00707-016-1646-x.
- Ghayesh, M.H. (2019), "Viscoelastic nonlinear dynamic behaviour of Timoshenko FG beams", Europ. Phys. J. Plus, 134(8), 401. https://doi.org/10.1140/epjp/i2019-12472-x.
- Heidari, M. and Arvin, H. (2019), "Nonlinear free vibration analysis of functionally graded rotating composite Timoshenko beams reinforced by carbon nanotubes", J. Vib. Control, 25(14), 2063-2078. http://dx.doi.org/10.1016/j.compstruct.2016.12.009.
- Hussain, M., Naeem, M.N. and Taj, M. (2019a), "Vibration characteristics of zigzag and chiral functionally graded material rotating carbon nanotubes sandwich with ring supports", Proceedings of the Institution of Mech. Eng., Part C: J. Mechanical Engineering Science, 233(16), 5763-5780. https://doi.org/10.1177/0954406219855095.
- Hussain, M. and Naeem, M.N. (2019b), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Mathem. Modelling, 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.
- Kiani, Y. (2016), "Thermal postbuckling of temperature-dependent sandwich beams with carbon nanotube-reinforced face sheets", J. Thermal Stresses, 39(9), 1098-1110. https://doi.org/10.1080/01495739.2016.1192856.
- Kirlangic, O. and Akbas, S.D. (2020), "Comparison study between layered and functionally graded composite beams for static deflection and stress analyses", J. Comput. Appl. Mech., 51(2), 294-301. https://doi.org/10.22059/JCAMECH.2020.296319.473.
- Kirlangic, O. and Akbas, S.D. (2021), "Dynamic responses of functionally graded and layered composite beams", Smart Struct. Syst., 27(1), 115-122. https://doi.org/10.12989/sss.2021.27.1.115.
- Nayfeh, A.H., Mook, D.T. and Holmes, P. (1980), "Nonlinear oscillations", ASME. J. Appl. Mech, 47(3), 692. https://doi.org/10.1115/1.3153771.
- Rafiee, M., He, X.Q. and Liew, K.M. (2014), "Non-linear dynamic stability of piezoelectric functionally graded carbon nanotube-reinforced composite plates with initial geometric imperfection", Int. J. Non-Linear Mech., 59, 37-51. https://doi.org/10.1016/j.ijnonlinmec.2013.10.011.
- Samadpour, M., Asadi, H. and Wang, Q. (2016), "Nonlinear aerothermal flutter postponement of supersonic laminated composite beams with shape memory alloys", Europ. J. Mech.-A/Solids, 57, 18-28. https://doi.org/10.1016/j.euromechsol.2015.11.004.
- Shafiei, H. and Setoodeh, A.R. (2017), "Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation", Steel Compos. Struct., 24(1), 65-77. http://dx.doi.org/10.12989/scs.2017.24.1.065.
- Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
- Shen, H.S. and Xiang, Y. (2012), "Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments", Comput. Methods Appl. Mech. Eng, 213, 196-205. https://doi.org/10.1016/j.cma.2011.11.025.
- Shi, Z., Yao, X., Pang, F. and Wang, Q. (2017), "An exact solution for the free-vibration analysis of functionally graded carbon-nanotube-reinforced composite beams with arbitrary boundary conditions", Sci. Reports, 7(1), 1-18. https://doi.org/10.1038/s41598-017-12596-w.
- Simsek, M. (2014), "Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He's variational method", Compos. Struct., 112, 264-272. https://doi.org/10.1016/j.compstruct.2014.02.010.
- Thang, P.T., Nguyen, T.T. and Lee, J. (2017), "A new approach for nonlinear buckling analysis of imperfect functionally graded carbon nanotube-reinforced composite plates", Compos. Part B: Eng., 127, 166-174. http://dx.doi.org/10.1016/j.compositesb.2016.12.002.
- Tornabene, F., Bacciocchi, M., Fantuzzi, N. and Reddy, J.N. (2019), "Multiscale approach for three-phase CNT/polymer/fiber laminated nanocomposite structures", Polymer Compos., 40(S1), E102-E126. https://doi.org/10.1002/pc.24520.
- Van Do, V.N., Jeon, J.T. and Lee, C.H. (2020), "Dynamic analysis of carbon nanotube reinforced composite plates by using Bezier extraction based isogeometric finite element combined with higher-order shear deformation theory", Mech. Mater., 142, 103307. http://dx.doi.org/10.1016/j.mechmat.2019.103307.
- Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. http://dx.doi.org/10.1016/j.commatsci.2013.01.028.
- Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Pressure Vessels and Piping, 98, 119-128. http://dx.doi.org/10.1016/j.ijpvp.2012.07.012.
- Zerrouki, R., Karas, A., Zidour, M., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Benrahou, K.H., Mahmoud, S.R. (2021), "Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam", Struct. Eng. Mech., 78(2), 117-124. https://doi.org/10.12989/sem.2021.78.2.117.