참고문헌
- ASCE (2016), ASCE Standard-ASCE/SEI 7-16 Minimum Design Loads for Buildings and Other Structures, Reston, VA American Society of Civil Engineers (ASCE).
- Abdolahi Rad, A. (2017), Seismic Ratcheting of Steel Low-Damage Buildings, University of Canterbury.
- Blebo, F.C. and D.A. Roke. (2018), "Seismic-resistant self-centering rocking core system with buckling restrained columns", Eng. Struct., 173, 372-382. https://doi.org/10.1016/j.engstruct.2018.06.117.
- Blomgren, H.E., Pei, S., Jin, Z., Powers, J., Dolan, J.D., Van de Lindt, J.W. and Huang, D. (2019), "Full-scale shake table testing of cross-laminated timber rocking shear walls with replaceable components" , J. Struct. Eng., 145(10), 04019115. https://doi.org/10.1061/(asce)st.1943-541x.0002388.
- Clough, R.W. and A.A. Huckelbridge. (1977), "Preliminary experimental study of seismic uplift of a steel frame", Earthq. Eng. Res. Cent., Report No. UCB/EERC-77/22 Earthquake Engineering Research Center, College of Engineering, University of California.
- Code, U.B. (1997), "Structural engineering design provisions", Int. Conf. Build. Off.
- Elettore, E., Freddi, F., Latour, M. and Rizzano, G. (2021), "Design and analysis of a seismic resilient steel moment resisting frame equipped with damage-free self-centering column bases", J. Constr. Steel Res., 179, 106543. https://doi.org/10.1016/j.jcsr.2021.106543.
- Grigorian, M. (2021), "Resiliency and post-earthquake realignment", Struct. Des. Tall Spec. Build., 30(5), https://doi.org/10.1002/tal.1836.
- Grigorian, M. and C. Grigorian. (2016), "An introduction to the structural design of rocking wall-frames with a view to collapse prevention, self-alignment and repairability", Struct. Des. Tall Spec. Build., 25(2), 93-111. https://doi.org/10.1002/tal.1230.
- Grigorian, M., Moghadam, A.S. and Mohammadi, H. (2017), "Advances in rocking core-moment frame analysis" , Bull. Earthq. Eng., 15(12), 5551-5577. https://doi.org/10.1007/s10518-017-0177-8.
- Grigorian, M., Moghadam, A.S., Mohammadi, H. and Kamizi, M. (2018), "Methodology for developing earthquake-resilient structures", Struct. Des. Tall Spec. Build., 28(2), e1571. https://doi.org/10.1002/tal.1571.
- Gupta, A. and Krawinkler, H. (1999), Seismic Demands for Performance Evaluation of Steel , John A. Blume Earthq. Eng. Cent. Tech. Rep. Ser. Stanford University.
- Hajjar, J.F., Sesen, A.H., Jampole, E. and Wetherbee, A. (2013), "A synopsis of sustainable structural systems with rocking, self-centering, and articulated energy-dissipating fuses", J. Earthq. Eng., 10(1), 45-66.
- Housner, G.W. (1963), "The behavior of inverted pendulum structures during earthquakes", Bull. Seismol. Soc. Am., 53(2), 403-417. https://doi.org/10.1017/CBO9781107415324.004.
- Hu, S., Wang, W., Alam, M.S. and Qu, B. (2021), "Performance-based design of self-centering energy-absorbing dual rocking core system", J. Constr. Steel Res., 181, 106630. https://doi.org/10.1016/j.jcsr.2021.106630.
- Hu, X., Lu, Q. and Y. Yang. (2018), "Rocking response analysis of self-centering walls under ground excitations", Math. Probl. Eng., 1-12. https://doi.org/10.1155/2018/4371585.
- Kafaeikivi, M., Roke, D.A. and Huang, Q. (2016), "Seismic performance assessment of self-centering dual systems with different configurations", Structures, 5, 88-100. https://doi.org/10.1016/j.istruc.2015.09.004.
- Li, J., Wang, W. and Qu. B. (2020), "Seismic design of low-rise steel building frames with self-centering panels and steel strip braces", Eng. Struct., 216, 110730. https://doi.org/10.1016/j.engstruct.2020.110730.
- Li, Z., Chen, F., He, M., Zhou, R., Cui, Y., Sun, Y. and He, G. (2021), "Lateral performance of self-centering steel-timber hybrid shear walls with slip-friction dampers: experimental investigation and numerical simulation", J. Struct. Eng., 147(1), 04020291. https://doi.org/10.1061/(asce)st.1943-541x.0002850.
- Lin, C.P., Wiebe, R. and Berman, J.W. (2019), "Analytical and numerical study of curved-base rocking walls", Eng. Struct., 197, 109397. https://doi.org/10.1016/j.engstruct.2019.109397.
- Lu, X., Dang, X., Qian, J., Zhou, Y. and Jiang, H. (2017), "Experimental study of self-centering shear walls with horizontal bottom slits", J. Struct. Eng., 143(3), 04016183. https://doi.org/10.1061/(asce)st.1943-541x.0001673.
- Massumi, A., Karimi, N. and Ahmadi, M. (2018), "Effects of openings geometry and relative area on seismic performance of steel shear walls", Steel Compos. Struct., 28(5), 617-628. https://doi.org/10.12989/scs.2018.28.5.617.
- Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2006), "OpenSees command language manual", Pacific Earthq. Eng. Res. Cent., 264, 451.
- Mohammadi, M.H., Massumi, A. and Meshkat-Dini. A. (2017), "Performance of RC moment frames with fixed and hinged supports under near-fault ground motions", Earthq. Struct., 13(1), 89-101. https://doi.org/10.12989/eas.2017.13.1.089.
- Paulay, T. and Priestley. M.J.N. (1992), Seismic Design of Reinforced Concrete and Masonry Buildings, Wiley New York.
- Pekelnicky, R. and Poland. C. (2012), "ASCE 41-13: Seismic evaluation and retrofit rehabilitation of existing buildings", SEAOC 2012 Conv. Proc.
- Piri, M. and Massumi. A. (2022), "Seismic performance of steel moment and hinged frames with rocking shear walls", J. Build. Eng., 50, 104121. https://doi.org/10.1016/J.JOBE.2022.104121.
- Qu, B., Sanchez, J.C., Hou, H. and Pollino, M. (2016), "Improving inter-story drift distribution of steel moment resisting frames through stiff rocking cores", Int. J. Steel Struct., 16(2), 547-557. https://doi.org/10.1007/s13296-016-6023-z.
- Restrepo, J.I., Mander, J. and Holden, T.J. (2001), "New generation of structural systems for earthquake resistance", New Zeal. Soc. Earthq. Eng. 2001 Conf., 1-9.
- American Society of Civil Engineers (2017), Seism. Eval. Retrofit Exist. Build. Seismic evaluation and retrofit of existing buildings
- Takeuchi, T., Chen, X. and Matsui, R. (2015), "Seismic performance of controlled spine frames with energy-dissipating members", J. Constr. Steel Res., 114, 51-65. https://doi.org/10.1016/j.jcsr.2015.07.002.
- Vamvatsikos, D. and Cornell, C.A. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dyn., 31(3), 491-514. Wiley Online Library. https://doi.org/10.1002/eqe.141
- Vamvatsikos, D. and Cornell, C.A. (2004), "Applied incremental dynamic analysis", Earthq. Spectra, 20(2), 523-553. https://doi.org/10.1193/1.1737737.
- Wang, J. and Zhao. H. (2018), "High performance damage-resistant seismic resistant structural systems for sustainable and resilient city: a review", Shock Vib., https://doi.org/10.1155/2018/8703697.
- Wu, D., Lu, X. and Zhao, B. (2019), "Parametric study of rocking cores-moment frames with supplemental viscous damping and self-centering devices using a distributed parameter model", Soil Dyn. Earthq. Eng., 123, 304-319. https://doi.org/10.1016/j.soildyn.2019.04.034.
- Xie, Q., Zhou, Z. and Meng, S.P. (2020), "Experimental investigation of the hysteretic performance of self-centering buckling-restrained braces with friction fuses", Eng. Struct., 203, 109865. https://doi.org/10.1016/j.engstruct.2019.109865.