DOI QR코드

DOI QR Code

Flutter behavior of graded graphene platelet reinforced cylindrical shells with porosities under supersonic airflow

  • Mohammad Mashhour (Aerospace Engineering Department and Center of Excellence in Computational Aerospace, Amirkabir University of Technology) ;
  • Mohammad Reza Barati (Aerospace Engineering Department and Center of Excellence in Computational Aerospace, Amirkabir University of Technology) ;
  • Hossein Shahverdi (Aerospace Engineering Department and Center of Excellence in Computational Aerospace, Amirkabir University of Technology)
  • 투고 : 2022.03.03
  • 심사 : 2023.01.02
  • 발행 : 2023.03.10

초록

In the present work, the flutter characteristics of porous nanocomposite cylindrical shells, reinforced with graphene platelets (GPLs) in supersonic airflow, have been investigated. Different distributions for GPLs and porosities have been considered which are named uniform and non-uniform distributions thorough the shell's thickness. The effective material properties have been determined via Halpin-Tsai micromechanical model. The cylindrical shell formulation considering supersonic airflow has been developed in the context of first-order shell and first-order piston theories. The governing equations have been solved using Galerkin's method to find the frequency-pressure plots. It will be seen that the flutter points of the shell are dependent on the both amount and distribution of porosities and GPLs and also shell geometrical parameters.

키워드

참고문헌

  1. Abazid, M.A., Zenkour, A.M. and Sobhy, M. (2020), "Wave propagation in FG porous GPLs-reinforced nanoplates under in-plane mechanical load and Lorentz magnetic force via a new quasi 3D plate theory", Mech. Based Des.Struct. Machines, 1-20. https://doi.org/10.1080/15397734.2020.1769651.
  2. Ahmed, R.A., Khalaf, B.S., Raheef, K.M., Fenjan, R.M. and Faleh, N.M. (2021), "Investigating dynamic response of nonlocal functionally graded porous piezoelectric plates in thermal environment", Steel Compos. Struct., 40(2), 243-254. https://doi.org/10.12989/scs.2021.40.2.243.
  3. Anh, V.T.T., Huong, V.T., Nguyen, P.D. and Duc, N.D. (2021), "Nonlinear dynamic analysis of porous graphene platelet-reinforced composite sandwich shallow spherical shells", Mech. Compos. Mater., 57(5), 609-622. https://doi.org/10.1007/s11029-021-09983-w.
  4. Bahaadini, R., Saidi, A.R., Arabjamaloei, Z. and Ghanbari-Nejad-Parizi, A. (2019), "Vibration analysis of functionally graded graphene reinforced porous nanocomposite shells", Int. J. Appl. Mech., 11(07), 1950068.
  5. Barati, M.R. and Zenkour, A.M. (2017), "Investigating post-buckling of geometrically imperfect metal foam nanobeams with symmetric and asymmetric porosity distributions", Compos. Struct., 182, 91-98. https://doi.org/10.1016/j.compstruct.2017.09.008.
  6. Barati, M.R. (2018), "Vibration analysis of porous FG nanoshells with even and uneven porosity distributions using nonlocal strain gradient elasticity", Acta Mechanica, 229(3), 1183-1196. http://dx.doi.org/10.1007/s00707-017-2032-z.
  7. Barati, M.R. and Zenkour, A.M. (2019), "Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions", Mech. Adv. Mater. Struct., 26(18), 1580-1588. https://doi.org/10.1080/15376494.2018.1444235.
  8. Belabed, Z., Selim, M.M., Slimani, O., Taibi, N., Tounsi, A. and Hussain, M. (2021), "An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells", Steel Compos. Struct., 40(2), 307. http://dx.doi.org/10.12989/scs.2021.40.2.307.
  9. Dong, Y.H., Li, Y.H., Chen, D. and Yang, J. (2018), "Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion. Compos. Part B: Eng., 145, 1-13. https://doi.org/10.1016/j.compositesb.2018.03.009.
  10. Ebrahimi, F., Farazmandnia, N., Kokaba, M.R. and Mahesh, V. (2021), "Vibration analysis of porous magneto-electro-elastically actuated carbon nanotube-reinforced composite sandwich plate based on a refined plate theory. Eng. Comput., 37(2), 921-936. https://doi.org/10.1007/s00366-019-00864-4.
  11. Gao, K., Gao, W., Chen, D. and Yang, J. (2018). "Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation. Compos. Struct., 204, 831-846. https://doi.org/10.1016/j.compstruct.2018.08.013.
  12. Guellil, M., Saidi, H., Bourada, F., Bousahla, A.A., Tounsi, A., Al-Zahrani, M.M. and Mahmoud, S.R. (2021), "Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation", Steel Compos. Struct., 38(1), 1-15. https://doi.org/10.12989/scs.2021.38.1.001.
  13. Guler, O. and Bagci, N. (2020), "A short review on mechanical properties of graphene reinforced metal matrix composites", J. Mater. Res. Technol., 9(3), 6808-6833. https://doi.org/10.1016/j.jmrt.2020.01.077.
  14. Hachemi, H., Bousahla, A.A., Kaci, A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M. and Mahmoud, S.R. (2021), "Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position", Steel Compos Struct., 39(1), 51-64. DOI: http://dx.doi.org/10.12989/scs.2021.39.1.051.
  15. Heidari, F., Taheri, K., Sheybani, M., Janghorban, M. and Tounsi, A. (2021), "On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes", Steel Compos. Sruct. 38(5), 533-545. http://dx.doi.org/10.12989/scs.2021.38.5.533.
  16. Javadi, M. and Khalafi, V. (2022). "Nonlinear Flutter Analysis of Porous Functionally Graded Plate in Yawed Hypersonic Flow", AUT J. Mech. Eng., 6(1), 5-5. https://doi.org/10.22060/ajme.2021.19915.5972.
  17. Li, K., Wu, D., Chen, X., Cheng, J., Liu, Z., Gao, W. and Liu, M. (2018), "Isogeometric analysis of functionally graded porous plates reinforced by graphene platelets", Compos. Struct., 204, 114-130. https://doi.org/10.1016/j.compstruct.2018.07.059.
  18. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  19. Miles, J.W. (1957), "Supersonic flutter of a cylindrical shell", J. Aeronaut. Sci., 24(2), 107-118. https://doi.org/10.2514/8.3780.
  20. Nguyen, N.V., Nguyen-Xuan, H., Lee, D. and Lee, J. (2020), "A novel computational approach to functionally graded porous plates with graphene platelets reinforcement", Thin Wall. Struct., 150, 106684. https://doi.org/10.1016/j.tws.2020.106684.
  21. Pan, H.G., Wu, Y.S., Zhou, J.N., Fu, Y.M., Liang, X. and Zhao, T. Y. (2021), "Free vibration analysis of a graphene-reinforced porous composite plate with different boundary conditions", Mater., 14(14), 3879. https://doi.org/10.3390/ma14143879.
  22. Rahimi, A., Alibeigloo, A. and Safarpour, M. (2020), "Three-dimensional static and free vibration analysis of graphene platelet-reinforced porous composite cylindrical shell", J. Vib. Control, 26(19-20), 1627-1645. https://doi.org/10.1177%2F1077546320902340. https://doi.org/10.1177%2F1077546320902340
  23. Rezaei, A.S. and Saidi, A.R. (2015). "Exact solution for free vibration of thick rectangular plates made of porous materials", Compos. Struct., 134, 1051-1060. https://doi.org/10.1016/j.compstruct.2015.08.125.
  24. Saidi, A.R., Bahaadini, R. and Majidi-Mozafari, K. (2019), "On vibration and stability analysis of porous plates reinforced by graphene platelets under aerodynamical loading", Compos. Part B: Eng., 164, 778-799. https://doi.org/10.1016/j.compositesb.2019.01.074.
  25. Shahgholian, D., Safarpour, M., Rahimi, A.R. and Alibeigloo, A. (2020), "Buckling analyses of functionally graded graphene-reinforced porous cylindrical shell using the Rayleigh-Ritz method", Acta Mechanica, 1-16. https://doi.org/10.1007/s00707-020-02616-8.
  26. Shahverdi, H., Khalafi, V. and Noori, S. (2016), "Aerothermoelastic analysis of functionally graded plates using generalized differential quadrature method", Latin Amer. J. Solids Struct., 13, 796-818. https://doi.org/10.1590/1679-78252072.
  27. Sun, G., Zhu, S., Teng, R., Sun, J., Zhou, Z. and Xu, X. (2022), "Post-buckling analysis of GPLs reinforced porous cylindrical shells under axial compression and hydrostatic pressure", Thin Wall. Struct., 172, 108834. https://doi.org/10.1016/j.tws.2021.108834.
  28. Thang, P.T., Nguyen-Thoi, T., Lee, D., Kang, J. and Lee, J. (2018), "Elastic buckling and free vibration analyses of porous-cellular plates with uniform and non-uniform porosity distributions", Aerosp. Sci. Technol., 79, 278-287. https://doi.org/10.1016/j.ast.2018.06.010.
  29. Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
  30. Turco, A., Monteduro, A.G., Mazzotta, E., Maruccio, G. and Malitesta, C. (2018), "An innovative porous nanocomposite material for the removal of phenolic compounds from aqueous solutions", Nanomaterials, 8(5), 334. https://doi.org/10.3390/nano8050334.
  31. Wang, Y. and Wu, D. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aerosp. Sci. Technol., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003.
  32. Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/j.compstruct.2018.03.090.
  33. Zhou, Z., Ni, Y., Tong, Z., Zhu, S., Sun, J. and Xu, X. (2019), "Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells", Int. J. Mech. Sci., 151, 537-550. https://doi.org/10.1016/j.ijmecsci.2018.12.012.