References
- Abazid, M.A., Zenkour, A.M. and Sobhy, M. (2020), "Wave propagation in FG porous GPLs-reinforced nanoplates under in-plane mechanical load and Lorentz magnetic force via a new quasi 3D plate theory", Mech. Based Des.Struct. Machines, 1-20. https://doi.org/10.1080/15397734.2020.1769651.
- Ahmed, R.A., Khalaf, B.S., Raheef, K.M., Fenjan, R.M. and Faleh, N.M. (2021), "Investigating dynamic response of nonlocal functionally graded porous piezoelectric plates in thermal environment", Steel Compos. Struct., 40(2), 243-254. https://doi.org/10.12989/scs.2021.40.2.243.
- Anh, V.T.T., Huong, V.T., Nguyen, P.D. and Duc, N.D. (2021), "Nonlinear dynamic analysis of porous graphene platelet-reinforced composite sandwich shallow spherical shells", Mech. Compos. Mater., 57(5), 609-622. https://doi.org/10.1007/s11029-021-09983-w.
- Bahaadini, R., Saidi, A.R., Arabjamaloei, Z. and Ghanbari-Nejad-Parizi, A. (2019), "Vibration analysis of functionally graded graphene reinforced porous nanocomposite shells", Int. J. Appl. Mech., 11(07), 1950068.
- Barati, M.R. and Zenkour, A.M. (2017), "Investigating post-buckling of geometrically imperfect metal foam nanobeams with symmetric and asymmetric porosity distributions", Compos. Struct., 182, 91-98. https://doi.org/10.1016/j.compstruct.2017.09.008.
- Barati, M.R. (2018), "Vibration analysis of porous FG nanoshells with even and uneven porosity distributions using nonlocal strain gradient elasticity", Acta Mechanica, 229(3), 1183-1196. http://dx.doi.org/10.1007/s00707-017-2032-z.
- Barati, M.R. and Zenkour, A.M. (2019), "Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions", Mech. Adv. Mater. Struct., 26(18), 1580-1588. https://doi.org/10.1080/15376494.2018.1444235.
- Belabed, Z., Selim, M.M., Slimani, O., Taibi, N., Tounsi, A. and Hussain, M. (2021), "An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells", Steel Compos. Struct., 40(2), 307. http://dx.doi.org/10.12989/scs.2021.40.2.307.
- Dong, Y.H., Li, Y.H., Chen, D. and Yang, J. (2018), "Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion. Compos. Part B: Eng., 145, 1-13. https://doi.org/10.1016/j.compositesb.2018.03.009.
- Ebrahimi, F., Farazmandnia, N., Kokaba, M.R. and Mahesh, V. (2021), "Vibration analysis of porous magneto-electro-elastically actuated carbon nanotube-reinforced composite sandwich plate based on a refined plate theory. Eng. Comput., 37(2), 921-936. https://doi.org/10.1007/s00366-019-00864-4.
- Gao, K., Gao, W., Chen, D. and Yang, J. (2018). "Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation. Compos. Struct., 204, 831-846. https://doi.org/10.1016/j.compstruct.2018.08.013.
- Guellil, M., Saidi, H., Bourada, F., Bousahla, A.A., Tounsi, A., Al-Zahrani, M.M. and Mahmoud, S.R. (2021), "Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation", Steel Compos. Struct., 38(1), 1-15. https://doi.org/10.12989/scs.2021.38.1.001.
- Guler, O. and Bagci, N. (2020), "A short review on mechanical properties of graphene reinforced metal matrix composites", J. Mater. Res. Technol., 9(3), 6808-6833. https://doi.org/10.1016/j.jmrt.2020.01.077.
- Hachemi, H., Bousahla, A.A., Kaci, A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M. and Mahmoud, S.R. (2021), "Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position", Steel Compos Struct., 39(1), 51-64. DOI: http://dx.doi.org/10.12989/scs.2021.39.1.051.
- Heidari, F., Taheri, K., Sheybani, M., Janghorban, M. and Tounsi, A. (2021), "On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes", Steel Compos. Sruct. 38(5), 533-545. http://dx.doi.org/10.12989/scs.2021.38.5.533.
- Javadi, M. and Khalafi, V. (2022). "Nonlinear Flutter Analysis of Porous Functionally Graded Plate in Yawed Hypersonic Flow", AUT J. Mech. Eng., 6(1), 5-5. https://doi.org/10.22060/ajme.2021.19915.5972.
- Li, K., Wu, D., Chen, X., Cheng, J., Liu, Z., Gao, W. and Liu, M. (2018), "Isogeometric analysis of functionally graded porous plates reinforced by graphene platelets", Compos. Struct., 204, 114-130. https://doi.org/10.1016/j.compstruct.2018.07.059.
- Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
- Miles, J.W. (1957), "Supersonic flutter of a cylindrical shell", J. Aeronaut. Sci., 24(2), 107-118. https://doi.org/10.2514/8.3780.
- Nguyen, N.V., Nguyen-Xuan, H., Lee, D. and Lee, J. (2020), "A novel computational approach to functionally graded porous plates with graphene platelets reinforcement", Thin Wall. Struct., 150, 106684. https://doi.org/10.1016/j.tws.2020.106684.
- Pan, H.G., Wu, Y.S., Zhou, J.N., Fu, Y.M., Liang, X. and Zhao, T. Y. (2021), "Free vibration analysis of a graphene-reinforced porous composite plate with different boundary conditions", Mater., 14(14), 3879. https://doi.org/10.3390/ma14143879.
- Rahimi, A., Alibeigloo, A. and Safarpour, M. (2020), "Three-dimensional static and free vibration analysis of graphene platelet-reinforced porous composite cylindrical shell", J. Vib. Control, 26(19-20), 1627-1645. https://doi.org/10.1177%2F1077546320902340. https://doi.org/10.1177%2F1077546320902340
- Rezaei, A.S. and Saidi, A.R. (2015). "Exact solution for free vibration of thick rectangular plates made of porous materials", Compos. Struct., 134, 1051-1060. https://doi.org/10.1016/j.compstruct.2015.08.125.
- Saidi, A.R., Bahaadini, R. and Majidi-Mozafari, K. (2019), "On vibration and stability analysis of porous plates reinforced by graphene platelets under aerodynamical loading", Compos. Part B: Eng., 164, 778-799. https://doi.org/10.1016/j.compositesb.2019.01.074.
- Shahgholian, D., Safarpour, M., Rahimi, A.R. and Alibeigloo, A. (2020), "Buckling analyses of functionally graded graphene-reinforced porous cylindrical shell using the Rayleigh-Ritz method", Acta Mechanica, 1-16. https://doi.org/10.1007/s00707-020-02616-8.
- Shahverdi, H., Khalafi, V. and Noori, S. (2016), "Aerothermoelastic analysis of functionally graded plates using generalized differential quadrature method", Latin Amer. J. Solids Struct., 13, 796-818. https://doi.org/10.1590/1679-78252072.
- Sun, G., Zhu, S., Teng, R., Sun, J., Zhou, Z. and Xu, X. (2022), "Post-buckling analysis of GPLs reinforced porous cylindrical shells under axial compression and hydrostatic pressure", Thin Wall. Struct., 172, 108834. https://doi.org/10.1016/j.tws.2021.108834.
- Thang, P.T., Nguyen-Thoi, T., Lee, D., Kang, J. and Lee, J. (2018), "Elastic buckling and free vibration analyses of porous-cellular plates with uniform and non-uniform porosity distributions", Aerosp. Sci. Technol., 79, 278-287. https://doi.org/10.1016/j.ast.2018.06.010.
- Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
- Turco, A., Monteduro, A.G., Mazzotta, E., Maruccio, G. and Malitesta, C. (2018), "An innovative porous nanocomposite material for the removal of phenolic compounds from aqueous solutions", Nanomaterials, 8(5), 334. https://doi.org/10.3390/nano8050334.
- Wang, Y. and Wu, D. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aerosp. Sci. Technol., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003.
- Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/j.compstruct.2018.03.090.
- Zhou, Z., Ni, Y., Tong, Z., Zhu, S., Sun, J. and Xu, X. (2019), "Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells", Int. J. Mech. Sci., 151, 537-550. https://doi.org/10.1016/j.ijmecsci.2018.12.012.