DOI QR코드

DOI QR Code

Seismic performance of moment resisting steel frames retrofitted with coupled steel plate shear walls with different link beams

  • Amir Masoumi Verki (Faculty of Civil Engineering, K. N. Toosi University of Technology) ;
  • Adolfo Preciado (Department of Habitat and Urban Development, Western Institute of Technology and Higher Education (ITESO)) ;
  • Pegah Amiri Motlagh (Faculty of Mechanical Engineering, Tarbiat Modares University)
  • 투고 : 2022.03.26
  • 심사 : 2023.03.06
  • 발행 : 2023.03.10

초록

In some buildings, the lateral structural response of steel framed buildings depends on the shear walls and it is very important to study the behavior of these elements under near-field seismic loads. The link beam in the opening of the shear wall between two wall plates is investigated numerically in terms of behavior and effects on frames. Based on the length of the beam and its bending and shear behavior, three types of models are constructed and analyzed, and the behavior of the frames is also compared. The results show that by reducing the length of the link beam, the base shear forces reduce about 20%. The changes in the length of the link beam have different effects on the degree of coupling. Increasing the length of the link beam increases the base shear about 15%. Also, it has both, a positive and a negative effect on the degree of coupling. The increasing strength of the coupling steel shear wall is linearly related to the yield stress of the beam materials, length, and flexural stiffness of the beam. The use of a shorter link beam will increase the additional strength and consequently improving the behavior of the coupling steel shear wall by reducing the stresses in this element. The link beam with large moment of inertia will also increase about 25% the additional strength and as a result the coefficient of behavior of the shear wall.

키워드

참고문헌

  1. ABAQUS (2017), Dassault Systemes, Simulia Corp. 
  2. Ambraseys, N.N., Douglas, J. (2003), ''Near-field horizontal and vertical earthquake ground motions'', Soil. Dyn. Earthq. Eng., 23, 1-18. https://doi.org/10.1016/S0267-7261(02)00153-7. 
  3. American Society of Civil Engineers (ASCE, 2010), Minimum Design Loads for Buildings and Other Structures (ASCE 7-10), American Society of Civil Engineers, Reston, Virginia. 
  4. Aval, S.B.B. and MasoumiVerki, A., (2019), "Seismic reliability assessment of a steel moment-resisting frame with two different ductility levels using a cloud analysis approach", Earthq. Eng. Eng. Vib., 18, 171-185, https://doi.org/10.1007/s11803-019-0497-6. 
  5. Borello, D.J. and Fahnestock, L.A. (2012), "Behavior and mechanisms of steel plate walls with coupling", J. Constr. Steel. Res., 74, 8-16, https://doi.org/10.1016/j.jcsr.2011.12.009. 
  6. Borello, D.J. and Fahnestock, L.A. (2013), "Seismic design and analysis of steel plate walls with coupling", Amer. Soc. Civil Eng., https://doi.org/10.1061/(ASCE)ST.1943-541X.0000576. 
  7. Emsen, E., Turkozer, C. D., Aksogan, O., Resatoglu, R. and Bikce; M., (2009), "Nonplanar coupled shear walls with stiffening beams", Sci. Res. Essays, 4(4), 328-345, https://doi.org/10.4203/ccp.88.290. 
  8. FEMA-P695 (2009), Quantification of Building Seismic Performance Factors, Federal Emergency Management Agency (FEMA), Washington, D.C., USA. 
  9. Gholhaki, M., Pachideh, G.H. and Javahertarash A. (2020), "Capacity spectrum of SPSW using pushover and energy method without need for calculation of target point", Structures, 26, 516-523. https://doi.org/10.1016/j.istruc.2020.04.028. 
  10. Gorji, M.S. and Roger Cheng, J.J. (2017), "Steel plate shear walls with outriggers. Part II: Seismic design and performance", J. Constr. Steel. Res., 137, 311-324. https://doi.org/10.1016/j.jcsr.2017.04.007. 
  11. Gorji, M.S. and Cheng, J.J.R. (2018), "Seismic behavior of coupled steel plate shear walls with simple boundary frame connections", Earthq. Eng. Struct. Dyn., 48(9), https://doi.org/10.1002/eqe.3146. 
  12. Harries, K.A. (1995), Seismic Design and Retrofit of Coupled Walls Using Structural Steel, Thesis Dissertation, McGil University, Montreal. 
  13. Hosseini, M., Sadeghi, H. and Habiby, S. (2011), "Comparing the nonlinear behavior of steel and concrete link beams in coupled shear walls by finite element analysis", Procedia Eng., 14, 2864-2881. https://doi.org/10.1016/j.proeng.2011.07.360. 
  14. Jeffrey, W. Berman and Michel Bruneau, (2005), "Experimental investigation of light-gauge steel plate shear walls", J. Struct. Eng., 131(2), https://doi.org/10.1061/(ASCE)0733-9445(2005)131:2(259). 
  15. Kheyroddin A., Gholhaki M. and Pachideh, G.H. (2019), "Seismic evaluation of reinforced concrete moment frames retrofitted with steel braces using IDA and pushover methods in the nearfault field", J. Rehab. Civil Eng., 7(1), 159-173. https://doi.org/10.22075/jrce.2018.12347.1211. 
  16. Li, C.H., Tsai, K.C., Chang, J.T. and Lin, C.H. (2011), "Cyclic test of a coupled steel plate shear wall substructure", Procedia Eng., 14, 582-589. https://doi.org/10.1016/j.proeng.2011.07.073. 
  17. Masoumi-Verki, A. and Preciado A. (2022), "Nonlinear incremental dynamic analysis and fragility curves of tall steel buildings with buckling restrained braces and tuned mass dampers", Earthq. Struct., 22(2), 169-184. https://doi.org/10.12989/eas.2022.22.2.169. 
  18. Masoumi-Verki, A. and Preciado A. (2021), "Experimental and analytical investigations of enhanced semi-rigid connections with dual pipe dampers", Structures, 33, 3765-3778, https://doi.org/10.1016/j.istruc.2021.06.106. 
  19. Masoumi-Verki, A. and Aval S.B.B. (2020), "Performance-based design through implementation of fema p-58 methodology in developing countries", Open J. Earthq. Res., 9(3), https://doi.org/10.4236/ojer.2020.93015. 
  20. Park, W.S. and Yun, H.D. (2006a), "Seismic behavior and design of steel coupling beams in a hybrid coupled shear wall systems", Nucl. Eng. Des., 236(23), 2474-2484. https://doi.org/10.1016/j.nucengdes.2006.03.008. 
  21. Park, W.S. and Yun, H.D. (2006b), "The bearing strength of steel coupling beam reinforced concrete shear wall connections", Nucl. Eng. Des., 236, 77-93. http://dx.doi.org/10.1016/j.nucengdes.2005.06.005. 
  22. Park, W.S. and Yun, H.D. (2006c), "Seismic performance of steel coupling beam wall connections in panel shear failure", J. Constr. Steel. Res., 62(10), 1016-1025. http://dx.doi.org/10.1016/j.jcsr.2006.01.005. 
  23. Pavir, A. and Shekastehband, B. (2017), "Hysteretic behavior of coupled steel plate shear walls", J. Constr. Steel. Res., 133, 19-35. https://doi.org/10.1016/j.jcsr.2017.01.019.
  24. PEER (2022), Ground Motion Database, PEER Center, https://ngawest2.berkeley.edu/. 
  25. Pachideh Gh., Kafi M. and Gholhaki M. (2022), "Experimental and numerical evaluation of an innovative diamond-scheme bracing system equipped with a yielding damper", Steel Compos. Struct., 36(2), 197-211. https://doi.org/10.12989/scs.2020.36.2.197. 
  26. Pachideh, G.H, Kafi, M. and Gholhaki, M. (2020a), "Evaluation of cyclic performance of a novel bracing system equipped with a circular energy dissipater", Structures, 28, 467-481. https://doi.org/10.1016/j.istruc.2020.09.007. 
  27. Pachideh, G.H., Gholhaki, M., Lashkari R. and Rezaifar, O. (2020b), "Behavior of BRB equipped with a casing comprised of steel and polyamide", ICE Proceedings Structures and Buildings, 174(8), 1-38, http://dx.doi.org/10.1680/jstbu.19.00206. 
  28. Preciado, A., Ramirez-Gaytan, A., Gutierrez, N., Vargas, D., Falcon, J.M. and Ochoa, G. (2018), "Nonlinear earthquake capacity of slender old masonry structures prestressed with steel, FRP and NiTi SMA tendons", Steel Compos. Struct., 26(2), 213-226. https://doi.org/10.12989/scs.2018.26.2.213. 
  29. Preciado, A. (2019), "Proteccion sismica con disipadores viscosos y viscoelasticos de edificios aporticados de 15 niveles de concreto localizados en Guadalajara, Mexico", Postgraduate Tesis en Diseno y Rehabilitacion Sismo-resistentes de Edificios y Puentes, Universidad Politecnica de Cataluna, Barcelona, Espana. 
  30. Purba, R. and Bruneau, M. (2015), "Experimental investigation of steel plate shear walls with in-span plastification along horizontal boundary elements", Eng. Struct., 97, 68-79, http://dx.doi.org/10.1016/j.engstruct.2015.04.008. 
  31. Qu, B. (2015), Experimental Investigation of Full-Scale Two-Story Steel Plate Shear Wall, Report on Seismic Retrofit of Acute Care Facilities, April. 
  32. Sarkisian, M., Wang, D., Lee, S. and Mathias, N. (2011), "World's tallest steel shear walled building", CTBUH J., Issue I. 
  33. Savbeli, R. and Bruneau, M, (2006), "Design guide 20: steel plate shear walls", American Institute of Steel Construction (AISC). 
  34. Shekastehband, B., Azaraxsh A. and Showkati, H., (2017), "Experimental and numerical study on seismic behavior of LYS and HYS steel plate shear walls connected to frame beams only", Arch. Civ. Mech. Eng., 17(1), 154-168, http://dx.doi.org/10.1016/j.acme.2016.09.006. 
  35. UBC (1997), Structural Engineering Design Provisions, Uniform Building Code (UBC), Volume 2, Whittier, California, USA. 
  36. Yadegari A., Pachideh Gh., Gholhaki M. and Shiri M. (2016), "Seismic Performance of C-PSW", 2nd International Conference on Civil Engineering, Architecture & Urban planning elites, 15th Nov., London-United Kingdom.