과제정보
The author is grateful to Prof. Dr. R. Faruk Yukseler for providing the field, his invaluable guidance and suggestions.
참고문헌
- Altekin, M. and Yukseler, R.F. (2008), "A parametric study on geometrically nonlinear analysis of initially imperfect shallow spherical shells", J. Elastom. Plast., 40(3), 253-270. https://doi.org/10.1177/0095244307084907.
- Altekin, M. and Yukseler, R.F. (2022), "Stress-driven nonlocal model on snapping of doubly hinged shallow arches", Mech. Adv. Mater. Struct., 1-11. https://doi.org/10.1080/15376494.2022.2029980.
- Arefi, A. and Nahvi, H. (2017), "Stability analysis of an embedded single-walled carbon nanotube with small initial curvature based on nonlocal theory", Mech. Adv. Mater. Struct., 24(11), 962-970. https://doi.org/10.1080/15376494.2016.1196800.
- Babaei, H., Kiani, Y. and Eslami, M.R. (2018), "Geometrically nonlinear analysis of functionally graded shallow curved tubes in thermal environment", Thin Wall. Struct., 132, 48-57. https://doi.org/10.1016/j.tws.2018.08.008.
- Bateni, M. and Eslami, M.R. (2014), "Non-linear in-plane stability analysis of FGM circular shallow arches under central concentrated force", Int. J. Nonlin. Mech., 60, 58-69. https://doi.org/10.1016/j.ijnonlinmec.2014.01.001.
- Cai, J.G., Zhou, Y. and Feng, J. (2013), "Post-buckling behavior of a fixed arch for variable geometry structures", Mech. Res. Commun., 52, 74-80. https://doi.org/10.1016/j.mechrescom.2013.07.002.
- Chandra, Y., Stanciulescu, I., Virgin, L.N., Eason, T.G. and Spottswood, S.M. (2013), "A numerical investigation of snap-through in a shallow arch-like model", J. Sound Vib., 332(10), 2532-2548. https://doi.org/10.1016/j.jsv.2012.12.019.
- Daikh, A.A., Houari, M.S.A., Karami, B., Eltaher, M.A., Dimitri, R. and Tornabene, F. (2021), "Buckling analysis of CNTRC curved sandwich nanobeams in thermal environment", Appl. Sci., 11(7), 3250. https://doi.org/10.3390/app11073250.
- Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. https://doi.org/10.12989/sem.2021.80.1.063.
- Drosopoulos, G.A., Stavroulakis, G.E. and Massalas, C.V. (2008), "Influence of the geometry and the abutments movement on the collapse of stone arch bridges", Constr. Build. Mater., 22(3), 200-210. https://doi.org/10.1016/j.conbuildmat.2006.09.001.
- Eltaher, M.A., Mohamed, N. and Mohamed, S.A. (2020), "Nonlinear buckling and free vibration of curved CNTs by doublet mechanics", Smart Struct. Syst., 26(2), 213-226. https://doi.org/10.12989/sss.2020.26.2.213.
- Emam, S.A., Eltaher, M.A., Khater, M.E. and Abdalla, W.S. (2018), "Postbuckling and free vibration of multilayer imperfect nanobeams under a pre-stress load", Appl. Sci., 8(11), 2238. https://doi.org/10.3390/app8112238.
- Erdolen, A. and Yukseler, R.F. (2003), "An approach for finite strains and rotations of shells of revolution with application to a spherical shell under a uniformly distributed pressure", J. Elastom. Plast., 35(4), 357-365. https://doi.org/10.1177/009524403038015.
- Eslami, M.R. (2018), Buckling and Postbuckling of Beams, Plates, and Shells, Springer, Switzerland.
- Gao, Y., Xiao, W.S. and Zhu, H. (2020), "Snap-buckling of functionally graded multilayer graphene platelet-reinforced composite curved nanobeams with geometrical imperfections", Eur. J. Mech.-A/Solid., 82(5), 103993. https://doi.org/10.1016/j.euromechsol.2020.103993.
- Ha, J., Gutman, S., Shon, S. and Lee, S. (2014), "Stability of shallow arches under constant load", Int. J. Nonlin. Mech., 58, 120-127. https://doi.org/10.1016/j.ijnonlinmec.2013.08.004.
- Harvey, P.S. and Virgin, L.N. (2015), "Coexisting equilibria and stability of a shallow arch: Unilateral displacement-control experiments and theory", Int. J. Solid. Struct., 54, 1-11. https://doi.org/10.1016/j.ijsolstr.2014.11.016.
- Hu, C.F., Pi, Y.L., Gao, W. and Li, L. (2018), "In-Plane non-linear elastic stability of parabolic arches with different rise-to-span ratios", Thin Wall. Struct., 129, 74-84. https://doi.org/10.1016/j.tws.2018.03.019.
- Inan, M. (2019), Strength of Materials, ITu Vakfi, Istanbul, Turkey.
- Karamanli, A. and Vo, T.P. (2022), "Finite element model for free vibration analysis of curved zigzag nanobeams", Compos. Struct., 282, 115097. https://doi.org/10.1016/j.compstruct.2021.115097.
- Karnovsky, I.A. (2012), Theory of Arched Structures: Strength, Stability, Vibration, Springer-Verlag, New York.
- Kaviani, F. and Mirdamadi, H.R. (2013), "Snap-through and bifurcation of nano-arches on elastic foundation by the strain gradient and nonlocal theories", Int. J. Struct. Stab. Dyn., 13(05), 1350022. https://doi.org/10.1142/S0219455413500223.
- King, C. and Brown, D. (2001), Design of Curved Steel, Steel Construction Institute, Ascot, UK.
- Kiss, L.P. (2020), "Nonlinear stability analysis of FGM shallow arches under an arbitrary concentrated radial force", Int. J. Mech. Mater. Des., 16, 91-108. https://doi.org/10.1007/s10999-019-09460-2.
- Lu, H., Liu, A., Pi Y.L., Bradford, M.A., Fu J. and Huang, Y. (2018), "Localized loading and nonlinear instability and postinstability of fixed arches", Thin Wall. Struct., 131, 165-178. https://doi.org/10.1016/j.tws.2018.06.019.
- Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
- Maharana, P. and Ananthasuresh, G.K. (2022), "Switching dynamics of shallow arches", arXiv preprint arXiv:2210.05734.
- Maron, M.J. and Lopez, R.J. (1991), Numerical Analysis: A Practical Approach, Wadsworth Publishing Company, Belmont.
- Moghaddasie, B. and Stanciulescu, I. (2013), "Equilibria and stability boundaries of shallow arches under static loading in a thermal environment", Int. J. Nonlin. Mech., 51(1), 132-144. https://doi.org/10.1016/j.ijnonlinmec.2013.01.001
- Mohsen, S.N. and Moghaddasie, B. (2018), "Stability of a half-sine shallow arch under sinusoidal and step loads in thermal environment", Lat. Am. J. Solid. Struct., 15(8), 15. https://doi.org/10.1590/1679-78254607.
- Mortazavi, P., Mirdamadi, H.R. and Shahidi, A.R. (2018), "Postbuckling, limit point, and bifurcation analyses of hallow nano-arches by generalized displacement control and finite difference considering small-scale effects", Int. J. Struct. Stab. Dyn., 18(01), 1850014. https://doi.org/10.1142/S0219455418500141.
- Ouakad, H.M. and Zur, K.K. (2022), "On the snap-through buckling analysis of electrostatic shallow arch micro-actuator via meshless Galerkin decomposition technique", Eng. Anal. Bound. Elem., 134, 388-397. https://doi.org/10.1016/j.enganabound.2021.10.007.
- Pi, Y.L. (2020), "Non-linear in-plane multiple equilibria and buckling of pin-ended shallow circular arches under an arbitrary radial point load", Appl. Math. Model., 77(1), 115-136. https://doi.org/10.1016/j.apm.2019.07.021.
- Pi, Y.L. and Bradford, M.A. (2012), "Non-linear buckling and postbuckling analysis of arches with unequal rotational end restraints under a central concentrated load", Int. J. Solid. Struct., 49(26), 3762-3773. https://doi.org/10.1016/j.ijsolstr.2012.08.012.
- Pi, Y.L. and Trahair, N.S. (1998), "Non-linear buckling and postbuckling of elastic arches", Eng. Struct., 20(7), 571-579. https://doi.org/10.1016/S0141-0296(97)00067-9.
- Pi, Y.L., Bradford, M.A. and Tin-Loi, F. (2007), "Nonlinear analysis and buckling of elastically supported circular shallow arches", Int. J. Solid. Struct., 44(7-8), 2401-2425. https://doi.org/10.1016/j.ijsolstr.2006.07.011.
- Plaut, R.H. (1979), "Influence of load position on the stability of shallow arches", J. Appl. Math. Phys. (ZAMP), 30(3), 548-552. https://doi.org/10.1007/BF01588902.
- Pontecorvo, M.E., Barbarino, S., Murray, G.J. and Gandhi, F.S. (2013), "Bistable arches for morphing applications", J. Intel. Mater. Syst. Struct., 24(3), 274-286. https://doi.org/10.1177/1045389X12457252.
- Salonga, J. and Gauvreau, P. (2014), "Comparative study of the proportions, form, and efficiency of concrete arch bridges", J. Bridge Eng., 19(3), 04013010. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000537.
- She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Therm. Stress., 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
- She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
- She, G.L., Ren, Y.R. and Yan, K.M. (2019), "On snap-buckling of porous FG curved nanobeams", Acta Astronautica, 161, 475-484. https://doi.org/10.1016/j.actaastro.2019.04.010.
- Shon, S., Ahn, S., Lee, S. and Ha, J. (2018), "A semianalytical approach for nonlinear dynamic system of shallow arches using higher order multistep Taylor method", Math. Prob. Eng., 2018, Article ID 9567619. https://doi.org/10.1155/2018/9567619.
- Simitses, G.J. and Hodges, D.H. (2006), Fundamentals of Structural Stability, Elsevier, Burlington, MA.
- Taghavi, N. and Nahvi, H. (2013), "Stability analysis of arch shape carbon nanotubes modeled by nonlocal elasticity theory", J. Comput. Theor. Nanosci., 10(3), 719-727. https://doi.org/10.1166/jctn.2013.2761.
- Tekin Atacan, A. and Yukseler, R.F. (2019), "Snap-through buckling of hinged-hinged initially imperfect beams undergoing finite deflections subjected to lateral concentrated midpoint loads", Mech. Solid., 54(7), 1119-1130. https://doi.org/10.3103/S0025654419070136.
- Tekin Atacan, A. and Yukseler, R.F. (2020), "Nonlinear behavior of beams having initially small imperfection subjected to sinusoidal load", Bitlis Eren u niversitesi Fen Bilimleri Dergisi, 9(1), 466-477. https://doi.org/10.17798/bitlisfen.592938.
- Tekin Atacan, A. and Yukseler, R.F. (2022a), "Snap-through instability of slightly curved beams under sinusoidal loading based on nonlocal elasticity theory", Mech. Bas. Des. Struct. Mach., 50(8), 2940-2960. https://doi.org/10.1080/15397734.2021.1901736.
- Tekin Atacan, A. and Yukseler, R.F. (2022b), "Snap-buckling and post-buckling analyses of fixed supported beams having initially circular imperfection under the effect of uniformly distributed vertical load", J. Facult. Eng. Arch. Gazi Univ., 37(2), 1091-1102. https://doi.org/10.17341/gazimmfd.845996.
- Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, 2nd Edition, MC Graw-Hill, New York, USA.
- Yan, S.T., Shen, X. and Jin, Z. (2018), "Instability of imperfect non-uniform shallow arch under uniform radial pressure for pinned and fixed boundary conditions", Thin Wall. Struct., 132, 217-236. https://doi.org/10.1016/j.tws.2018.08.018.
- Yan, S.T., Shen, X. and Jin, Z. (2019), "Static and dynamic symmetric snap-through of non-uniform shallow arch under a pair of end moments considering critical slowing-down effect", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 233(16), 5735-5762. https://doi.org/10.1177/0954406219855105.
- Yildirim, B. and Yukseler, R.F. (2011), "Effect of compressibility on nonlinear buckling of simply supported polyurethane spherical shells subjected to an apical load", J. Elastom. Plast., 43(2), 167-187. https://doi.org/10.1177/0095244310393930.
- Yukseler, R.F. (2015), "A theory for rubber-like rods", Int. J. Solid. Struct., 69-70, 350-359. https://doi.org/10.1016/j.ijsolstr.2015.05.015.
- Zhang, Y.W., Ding, H.X. and She, G.L. (2022), "Snap-buckling and resonance of functionally graded graphene reinforced composites curved beams resting on elastic foundations in thermal environment", J. Therm. Stress., 45(12), 1029-1042. https://doi.org/10.1080/01495739.2022.2125137.
- Zhang, Y.Y., Wang, Y.X., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTR curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. http://doi.org/10.12989/scs.2021.38.3.293.
- Zhang, Z., Liu, A., Yang, J. and Huang, Y. (2019), "Nonlinear in-plane elastic buckling of a laminated circular shallow arch subjected to a central concentrated load", Int. J. Mech. Sci., 161-162, 105023. https://doi.org/10.1016/j.ijmecsci.2019.105023.
- Zhang, Z., Liu, A., Yang, J., Pi, Y.L., Huang, Y. and Fu, J. (2020), "A theoretical and experimental study on in-plane buckling of orthotropic composite arches under an arbitrary radial point load", Compos. Struct., 237(6), 111933. https://doi.org/10.1016/j.compstruct.2020.111933.