과제정보
The research was supported by the Hungarian National Research, Development, and Innovation Office-NKFIH under Project Number K 134358.
참고문헌
- Avcar, M., Hadji, L. and Civalek, O. (2021), "Natural frequency analysis of sigmoid functionally graded sandwich beams in the framework of high order shear deformation theory", Compos. Struct, 276, 1-14. https://doi.org/10.1016/j.compstruct.2021.114564.
- Azizi, S., Awad M.M. and Ahmadloo, E. (2016), "Prediction of water holdup in vertical and inclined oil-water two-phase flow using artificial neural network", Int. J. Multiphas. Flow, 80, 181-187. ttps://doi.org/10.1016/j.ijmultiphaseflow.2015.12.010.
- Basheer, I.A. and Hajmeer, M. (2000), "Artificial neural networks: Fundamentals, computing, design, and application", J. Microbiol. Meth., 43(1), 3-31. https://doi.org/10.1016/S0167-7012(00)00201-3.
- Basu, J.K., Bhattacharyya, D. and Kim, T. (2010), "Use of artificial neural network in pattern recognition", Int. J. Softw. Eng. Appl., 4(2), 23-34.
- Baykasoglu, A. and Baykasoglu, C. (2017), "Multiple objective crashworthiness optimization of circular tubes with functionally graded thickness via artificial neural networks and genetic algorithms", Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 231(11), 2005-2016. https://doi.org/10.1177/0954406215627181.
- Compton, B.G. and Lewis, J.A. (2014), "3D-printing of lightweight cellular composites", Adv. Mater., 26(34), 5930-5935. https://doi.org/10.1002/adma.201401804.
- Dababneh, O., Kipouros, T. and Whidborne, J.F. (2018), "Application of an efficient gradient-based optimization strategy for aircraft wing structures", Aerosp., 5(1), 1-27. https://doi.org/10.3390/aerospace5010003.
- Esmaeili, M., Osanloo, M., Rashidinejad, F., Aghajani B.A. and Taji, M. (2014), "Multiple regression, ANN and ANFIS models for prediction of backbreak in the open pit blasting", Eng. Comput., 30(4), 549-558. https://doi.org/10.1007/s00366-012-0298-2.
- Hadji, L. (2019), "An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models", Struct. Eng. Mech., 69(2), 231-241. https://doi.org/10.12989/sem.2019.69.2.231.
- Hadji, L., Atmane, H.A., Tounsi, A., Mechab, I. and Adda Bedia, E.A. (2011), "Free vibration of functionally graded sandwich plates using four-variable refined plate theory", Appl. Math. Mech., 32(7), 925-942. https://doi.org/10.1007/s10483-011-1470-9.
- Hadji, L. and Avcar, M. (2021), "Free vibration analysis of FG porous sandwich plates under various boundary conditions", J. Appl. Comput. Mech., 7(2), 505-519. https://doi.org/10.22055/jacm.2020.35328.2628.
- Hadji, L., Khelifa, Z. and El Abbes, A.B. (2016), "A new higher order shear deformation model for functionally graded beams", KSCE J. Civil Eng., 20(5), 1835-1841. https://doi.org/10.1007/s12205-015-0252-0.
- Harizi, W., Anjoul, J., Acosta S.V.A., Aboura, Z. and Briand, V. (2022), "Mechanical behavior of carbon-reinforced thermoplastic sandwich composites with several core types during three-point bending tests", Compos. Struct., 262, 113590. 1-12. https://doi.org/10.1016/j.compstruct.2021.113590.
- HexCel Composites (2000), Honeycomb Sandwich Design Technology, HexWeb Honeycomb Sandw. Des. Technol., AGU 075b, 1-28.
- Kan, C.W. and Song, L.J. (2016), "An artificial neural network model for prediction of colour properties of knitted fabrics induced by laser engraving", Neur. Proc. Lett., 44(3), 639-650. https://doi.org/10.1007/s11063-015-9485-7.
- Kovacs, Gy. (2019), "Optimization of structural elements of transport vehicles in order to reduce weight and fuel consumption", Struct. Eng. Mech., 71(3), 283-290. https://doi.org/10.12989/sem.2019.71.3.283.
- Kumar, R., Aggarwal, R.K. and Sharma, J.D. (2015), "Comparison of regression and artificial neural network models for estimation of global solar radiations", Renew. Sustain. Energy Rev., 52, 1294-1299. https://doi.org/10.1016/j.rser.2015.08.021.
- Lan, X., Huang, Q., Zhou, T. and Feng, S. (2020), "Optimal design of a novel cylindrical sandwich panel with double arrow auxetic core under air blast loading", Def. Technol., 16(3), 617-626. https://doi.org/10.1016/j.dt.2019.09.010.
- Lanzi, L., Bisagni, C. and Ricci, S. (2004), "Neural network systems to reproduce crash behavior of structural components", Comput. Struct., 82(1), 93-108. https://doi.org/10.1016/j.compstruc.2003.06.001.
- Larbi, L.O., Hadji, L., Meziane, M.A.A. and Adda Bedia, E.A. (2018), "An analytical solution for free vibration of functionally graded beam using a simple first-order shear deformation theory", Wind Struct., 27(4), 247-254. https://doi.org/10.12989/was.2018.27.4.247.
- Panda, B.N., Bahubalendruni, M.V.A.R. and Biswal, B.B. (2015), "A general regression neural network approach for the evaluation of compressive strength of FDM prototypes", Neur. Comput. Appl., 26(5), 1129-1136. https://doi.org/10.1007/s00521-014-1788-5.
- Pandey, D.S., Das, S., Pan, I., Leahy, J.J. and Kwapinski, W. (2016), "Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor", Waste Manage., 58, 202-213. https://doi.org/10.1016/j.wasman.2016.08.023.
- Qiu, K., Zhang, W. and Zhu, J. (2009), "Bending and dynamic analyses of sandwich panels considering the size effect of sandwich core", Int. J. Simul. Multidisc. Des. Optim., 3(3), 370-383. https://doi.org/10.1051/ijsmdo/2009013.
- Ramirez, J.D.R., Castanie, B. and Bouvet, C. (2017), "Analysis of nonlinear behavior on honeycomb cores", 21st International Conference on Composite Materials (ICCM 21), August.
- Stocchi, A., Colabella, L., Cisilino, A. and Alvarez, V. (2014), "Manufacturing and testing of a sandwich panel honeycomb core reinforced with natural-fiber fabrics", Mater. Des., 55, 394-403. https://doi.org/10.1016/j.matdes.2013.09.054.
- Sun, G., Li, G., Stone, M. and Li, Q. (2010), "A two-stage multi-fidelity optimization procedure for honeycomb-type cellular materials", Comput. Mater. Sci., 49(3), 500-511. https://doi.org/10.1016/j.commatsci.2010.05.041.
- Sun, Y. and Li, Q.M. (2018), "Dynamic compressive behaviour of cellular materials: A review of phenomenon, mechanism and modelling", Int. J. Impact Eng., 112, 74-115. https://doi.org/10.1016/j.ijimpeng.2017.10.006.
- Sun, Z., Li, D., Zhang, W., Shi, S. and Guo, X. (2017), "Topological optimization of biomimetic sandwich structures with hybrid core and CFRP face sheets", Compos. Sci. Technol., 142, 79-90. https://doi.org/10.1016/j.compscitech.2017.01.029.
- Sutherland, L.S. (2018), "A review of impact testing on marine composite materials: Part I-Marine impacts on marine composites", Compos. Struct., 188, 197-208. https://doi.org/10.1016/j.compstruct.2017.12.073.
- Szava, R.I., Szava, I., Vlase, S. and Modrea, A. (2020), "Determination of young's moduli of the phases of composite materials reinforced with longitudinal fibers, by global measurements", Symmetry, 12(10), 1-13. https://doi.org/10.3390/sym12101607.
- Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2014). "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech. A/Solid., 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008.
- Todor, M.P., Kiss, I. and Cioata, V.G. (2020), "Development of fabric-reinforced polymer matrix composites using bio-based components from post-consumer textile waste", Mater. Today Proc., 45, 4150-4156. https://doi.org/10.1016/j.matpr.2020.11.927.
- Virag, Z. and Jarmai, K. (2020), "Optimum design of stiffened plates for static or dynamic loadings using different ribs", Struct. Eng. Mech., 74(2), 255-266. https://doi.org/10.12989/sem.2020.74.2.255.
- Vitale, J.P., Francucci, G., Xiong, J. and Stocchi, A. (2017), "Failure mode maps of natural and synthetic fiber reinforced composite sandwich panels", Compos. Part A Appl. Sci. Manuf., 94, 217-225. https://doi.org/10.1016/j.compositesa.2016.12.021.
- Wang, K., Xu, H., Qu, F., Wang, X. and Shi, Y. (2018), "A reliability analysis framework with Monte Carlo simulation for weld structure of crane's beam", AIP Conf. Proc., 1955(1), 030024. https://doi.org/10.1063/1.5033623.
- Yang, X.H., Yan, H.B., Wang, W.B., Jin, L.W., Lu, T.J. and Ichimiya, K. (2015), "Thermo-fluidic characteristics of natural convection in honeycombs: The role of chimney enhancement", Sci. China Technol. Sci., 58(8), 1318-1327. https://doi.org/10.1007/s11431-015-5869-1.
- Zenkert, D. (1995), An Introduction to Sandwich Construction, Engineering Materials Advisory Services (EMAS), London, Great Britain.
- Zhang, Q., Yang, X., Li, P., Huang, G., Feng, S., Shen, C., Han, B., Zhang, X., Jin, F., Xu, F. and Lu, T.J. (2015), "Bioinspired engineering of honeycomb structure-Using nature to inspire human innovation", Prog. Mater. Sci., 74, 332-400. https://doi.org/10.1016/j.pmatsci.2015.05.001.