DOI QR코드

DOI QR Code

On the receding contact plane problem for bi-FGM-layers indented by a flat indenter

  • Cong Wang (Intelligent Policing Key Laboratory of Sichuan Province, Sichuan Police College) ;
  • Jie Yan (Intelligent Policing Key Laboratory of Sichuan Province, Sichuan Police College) ;
  • Rui Cao (Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University)
  • Received : 2021.12.19
  • Accepted : 2023.01.30
  • Published : 2023.03.10

Abstract

The major objective of this paper is to study the receding contact problem between two functional graded layers under a flat indenter. The gravity is assumed negligible, and the shear moduli of both layers are assumed to vary exponentially along the thickness direction. In the absence of body forces, the problem is reduced to a system of Fredholm singular integral equations with the contact pressure and contact size as unknowns via Fourier integral transform, which is transformed into an algebraic one by the Gauss-Chebyshev quadratures and polynomials of both the first and second kinds. Then, an iterative speediest descending algorithm is proposed to numerically solve the system of algebraic equations. Both semi-analytical and finite element method, FEM solutions for the presented problem validate each other. To improve the accuracy of the numerical result of FEM, a graded FEM solution is performed to simulate the FGM mechanical characteristics. The results reveal the potential links between the contact stress/size and the indenter size, the thickness, as well as some other material properties of FGM.

Keywords

Acknowledgement

The research described in this paper was financially supported by the Natural Science Foundation of China (No. 61602331), the Technical Research Program of the Ministry of Public Security of the People's Republic of China (No. 2022JSM04), and the Opening Project of Intelligent Policing Key Laboratory of Sichuan Province (No. ZNJW2022ZZMS002, ZNJW2022ZZMS004). The authors would also like to thank a lot to Dr. Lin Lin (Sichuan Police College) for the kindly help.

References

  1. Adiyaman, G., Birinci, A., Oner, E. and Yaylaci, M. (2016), "A receding contact problem between a functionally graded layer and two homogeneous quarter planes", Acta Mechanica, 227(6), 1753-1766. https://doi.org/10.1007/s00707-016-1580-y.
  2. Attia, M.A. and El-Shafei, A.G. (2020), "Investigation of multibody receding frictional indentation problems of unbonded elastic functionally graded layers", Int. J. Mech. Sci., 184(15), 105838. https://doi.org/10.1016/j.ijmecsci.2020.105838.
  3. Birinci, A., Adiyaman, G., Yaylaci, M. and Oner, E. (2015), "Analysis of continuous and discontinuous cases of a contact problem using analytical method and FEM", Lat. Am. J. Solid. Struct., 12(9), 1771-1789. https://doi.org/10.1590/1679-78251574.
  4. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197.
  5. Cao, R., Li, L., Li, X. and Mi, C. (2021), "On the frictional receding contact between a graded layer and an orthotropic substrate indented by a rigid flat-ended stamp", Mech. Mater., 158, 103847. https://doi.org/10.1016/j.mechmat.2021.103847.
  6. Cao, R., Yan, J. and Mi, C. (2023), "On the sliding frictional nanocontact of an exponentially graded layer/substrate structure", Int. J. Mech. Mater. Des., 19, 103847. https://doi.org/10.1007/s10999-022-09622-9.
  7. Chen, X.W. and Yue, Z.Q. (2019), "Contact mechanics of two elastic spheres reinforced by functionally graded materials (FGM) thin coatings", Eng. Anal. Bound. Elem., 109, 57-69. https://doi.org/10.1016/j.enganabound.2019.09.009.
  8. Comez, I. (2021), "Thermoelastic receding contact problem of a layer resting on a half-plane with frictional heat generation", J. Therm. Stress., 44(5), 566-581. https://doi.org/10.1080/01495739.2021.1873082.
  9. Comez, I. and Guler, M.A. (2017), "The contact problem of a rigid punch sliding over a functionally graded bilayer", Acta Mechanica, 228(6), 2237-2249. https://doi.org/10.1007/s00707-017-1827-2.
  10. Comez, I. and Yilmaz, K.B. (2019), "Mechanics of frictional contact for an arbitrary oriented orthotropic material", ZAMM-J. Appl. Math. Mech./Zeitschrift fur Angewandte Mathematik und Mechanik, 99(3), e201800084. https://doi.org/10.1002/zamm.201800084.
  11. Comez, I., El-Borgi, S. and Yildirim, B. (2020), "Frictional receding contact problem of a functionally graded layer resting on a homogeneous coated half-plane", Arch. Appl. Mech., 90(9), 2113-2131. https://doi.org/10.1007/s00419-020-01712-4.
  12. Comez, I., El-Borgi, S., Kahya, V. and Erdol, R. (2016), "Receding contact problem for two-layer functionally graded media indented by a rigid punch", Acta Mechanica, 227(9), 2493-2504. https://doi.org/10.1007/s00707-016-1648-8.
  13. Comez, I., Kahya, V. and Erdol, R. (2018), "Plane receding contact problem for a functionally graded layer supported by two quarter-planes", Arch. Mech., 70(6), 485-504. https://doi.org/10.24423/aom.2846.
  14. El-Borgi, S. and Comez, I. (2017), "A receding frictional contact problem between a graded layer and a homogeneous substrate pressed by a rigid punch", Mech. Mater., 114, 201-214. https://doi.org/10.1016/j.mechmat.2017.08.003.
  15. El-Borgi, S., Abdelmoula, R. and Keer, L. (2006), "A receding contact plane problem between a functionally graded layer and a homogeneous substrate", Int. J. Solid. Struct., 43(3), 658-674. https://doi.org/10.1016/j.ijsolstr.2005.04.017.
  16. El-Borgi, S., Comez, I. and Ali Guler, M. (2021), "A receding contact problem between a graded piezoelectric layer and a piezoelectric substrate", Arch. Appl. Mech., 91(12), 4835-4854. https://doi.org/10.1007/s00419-021-02037-6.
  17. Erdogan, F. (1995), "Fracture mechanics of functionally graded materials", Compos. Eng., 5(7), 753-770. https://doi.org/10.1016/0961-9526(95)00029-M.
  18. Guler, M.A., Kucuksucu, A., Yilmaz, K.B. and Yildirim, B. (2017), "On the analytical and finite element solution of plane contact problem of a rigid cylindrical punch sliding over a functionally graded orthotropic medium", Int. J. Mech. Sci., 120, 12-29. https://doi.org/10.1016/j.ijmecsci.2016.11.004.
  19. Johnson, K.L. (1985), Contact Mechanics, Cambridge University Press, London, UK.
  20. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Bedia, E.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  21. Ke, L.L. (2007), "Two-dimensional contact mechanics and fretting analysis of functionally graded materials", Ph. D. Dissertation, Beijing Jiaotong University, Beijing, China.
  22. Khajehtourian, R., Adibnazari, S. and Tashi, S. (2012), "The sliding frictional contact problem in two dimensional graded materials loaded by a flat stamp", Adv. Mater. Res., 463-464, 336-342. https://doi.org/10.4028/www.scientific.net/AMR.463-464.336.
  23. Liu, T.J., Zhang, C., Wang, Y.S. and Xing, Y.M. (2016), "The axisymmetric stress analysis of double contact problem for functionally graded materials layer with arbitrary graded materials properties", Int. J. Solid. Struct., 96, 229-239. https://doi.org/10.1016/j.ijsolstr.2016.06.006.
  24. Liu, Z.X., Yan, J. and Mi, C.W. (2018), "On the receding contact between a two-layer inhomogeneous laminate and a half-plane", Struct. Eng. Mech., 66(3), 329-341. https://doi.org/10.12989/sem.2018.66.3.329.
  25. Oner, E. (2021), "Computational contact mechanics for a medium consisting of functionally graded material coating and orthotropic substrate", J. Struct. Eng. Appl. Mech., 4(4), 249-266. https://doi.org/10.31462/jseam.2021.04249266.
  26. Oner, E. (2021), "Frictionless contact mechanics of an orthotropic coating/isotropic substrate system", Comput. Concrete, 28(2), 209-220. https://doi.org/10.12989/cac.2021.28.2.209.
  27. Oner, E. (2021), "Two-dimensional frictionless contact analysis of an orthotropic layer under gravity", J. Mech. Mater. Struct., 16(4), 573-594. https://doi.org/10.2140/jomms.2021.16.573.
  28. Oner, E. and Birinci, A. (2014), "Continuous contact problem for two elastic layers resting on an elastic half-infinite plane", J. Mech. Mater. Struct., 9(1), 105-119. https://doi.org/10.2140/jomms.2014.9.105.
  29. Oner, E. and Birinci, A. (2020), "Investigation of the solution for discontinuous contact problem between a functionally graded (FG) layer and homogeneous half-space", Arch. Appl. Mech., 90(12), 2799-2819. https://doi.org/10.1007/s00419-020-01750-y.
  30. Oner, E., Adiyaman, G. and Birinci, A. (2017), "Continuous contact problem of a functionally graded layer resting on an elastic half-plane", Arch. Mech., 69(1), 105-119.
  31. Oner, E., Yaylaci, M. and Birinci, A. (2014), "Solution of a receding contact problem using an analytical method and a finite element method", J. Mech. Mater. Struct., 9(3), 333-345. https://doi.org/10.2140/jomms.2014.9.333.
  32. Oner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.
  33. Ozsahin, T.S. (2007), "Frictionless contact problem for a layer on an elastic half plane loaded by means of two dissimilar rigid punches", Struct. Eng. Mech., 25(4), 383-403. https://doi.org/10.12989/sem.2007.25.4.383.
  34. Parel, K.S. and Hills, D.A. (2016), "Frictional receding contact analysis of a layer on a half-plane subjected to semi-infinite surface pressure", Int. J. Mech. Sci., 108, 137-143. https://doi.org/10.1016/j.ijmecsci.2016.01.022.
  35. Polat, A., Kaya, Y. and Ozsahin, T.S. (2018), "Analytical solution to continuous contact problem for a functionally graded layer loaded through two dissimilar rigid punches", Meccanica, 53(14), 3565-3577. https://doi.org/10.1007/s11012-018-0902-7.
  36. Rhimi, M., El-Borgi, S. and Lajnef, N. (2011), "A double receding contact axisymmetric problem between a functionally graded layer and a homogeneous substrate", Mech. Mater., 43, 787-798. https://doi.org/10.1016/j.mechmat.2011.08.013.
  37. Wu, G.T., Wu, J. and Zhang, L. (2019), "An analytical analysis of receding contact between a compressible elastic thin film and a rigid substrate due to spherical indentation", Zeitschrift fur Angewandte Mathematik und Physik, 70(4), 1-13. https://doi.org/10.1007/s00033-019-1169-0.
  38. Yan, J. and Li, X. (2015), "Double receding contact plane problem between a functionally graded layer and an elastic layer", Eur. J. Mech. A-Solid., 53, 143-150. https://doi.org/10.1016/j.euromechsol.2015.04.001.
  39. Yan, J. and Mi, C. (2019), "A receding contact analysis for an elastic layer reinforced with a functionally graded coating and pressed against a half-plane", J. Mech. Sci. Technol., 33(9), 4331-4344. https://doi.org/10.1007/s12206-019-0829-5.
  40. Yan, J. and Mi, C. (2020), "On the receding contact between a homogeneous elastic layer and a half-plane substrate coated with functionally graded materials", Int. J. Comput. Meth., 17(01), 89-94. https://doi.org/10.1142/S0219876218440085.
  41. Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2021), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. https://doi.org/10.12989/cac.2021.27.3.199.
  42. Yildirim, B., Yilmaz, K.B., Comez, I. and Guler, M.A. (2019), "Double frictional receding contact problem for an orthotropic layer loaded by normal and tangential forces", Meccanica, 54(14), 2183-2206. https://doi.org/10.1007/s11012-019-01058-4.
  43. Yilmaz, K.B., Comez, I., Yildirim, B.O.R.A., Guler, M.A. and El-Borgi, S. (2018), "Frictional receding contact problem for a graded bilayer system indented by a rigid punch", Int. J. Mech. Sci., 141, 127-142. https://doi.org/10.1016/j.ijmecsci.2018.03.041.