DOI QR코드

DOI QR Code

Structural optimal control based on explicit time-domain method

  • Taicong Chen (School of Civil Engineering and Transportation, South China University of Technology) ;
  • Houzuo Guo (School of Civil Engineering and Transportation, South China University of Technology) ;
  • Cheng Su (School of Civil Engineering and Transportation, South China University of Technology)
  • Received : 2021.07.07
  • Accepted : 2023.01.25
  • Published : 2023.03.10

Abstract

The classical optimal control (COC) method has been widely used for linear quadratic regulator (LQR) problems of structural control. However, the equation of motion of the structure is incorporated into the optimization model as the constraint condition for the LQR problem, which needs to be solved through the Riccati equation under certain assumptions. In this study, an explicit optimal control (EOC) method is proposed based on the explicit time-domain method (ETDM). By use of the explicit formulation of structural responses, the LQR problem with the constraint of equation of motion can be transformed into an unconstrained optimization problem, and therefore the control law can be derived directly without solving the Riccati equation. To further optimize the weighting parameters adopted in the control law using the gradient-based optimization algorithm, the sensitivities of structural responses and control forces with respect to the weighting parameters are derived analytically based on the explicit expressions of dynamic responses of the controlled structure. Two numerical examples are investigated to demonstrate the feasibility of the EOC method and the optimization scheme for weighting parameters involved in the control law.

Keywords

Acknowledgement

The research is funded by the National Natural Science Foundation of China (51678252 and 52178479) and the Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology (2021B1212040003).

References

  1. Aldemir, U., Bakioglu, M. and Akhiev, S.S. (2001), "Optimal control of linear buildings under seismic excitations", Earthq. Eng. Struct. Dyn., 30(6), 835-851. https://doi.org/10.1002/eqe.41.
  2. Aldemir, U., Yanik, A. and Bakioglu, M. (2012), "Control of structural response under earthquake excitation", Comput. Aid. Civil Infrastr. Eng., 27(8), 620-638. https://doi.org/10.1111/j.1467-8667.2012.00776.x.
  3. Amini, F., Hazaveh, K.N. and Rad, A.A. (2013), "Wavelet PSObased LQR algorithm for optimal structural control using active tuned mass dampers", Comput. Aid. Civil Infrastr. Eng., 28(7), 542-557. https://doi.org/10.1111/mice.12017.
  4. Bhushan, R., Chatterjee, K. and Shankar, R. (2016), "Comparison between GA-based LQR and conventional LQR control method of DFIG wind energy system", Proceedings of the 3rd International Conference on the Recent Advances in Information Technology, Dhanbad, India, March.
  5. Casciati, F., Rodellar, J. and Yildirim, U. (2012), "Active and semi-active control of structures-theory and applications, a review of recent advances", J. Intel. Mater. Syst. Struct., 23(11), 1181-1195. https://doi.org/10.1177/1045389X12445029.
  6. Chung, L.L. (1999), "Modified predictive control of structures", Eng. Struct., 21(12), 1076-1085. https://doi.org/10.1016/S0141-0296(98)00055-8. Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G.,
  7. Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, B.F. and Yao, J.T.P. (1997), "Structural control, past, present, and future", J. Eng. Mech., 123(9), 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897).
  8. Kanai, K. (1957), "Semi-empirical formula for the seismic characteristics of the ground", Bull. Earthq. Res. Inst., 35(2), 309-325. https://doi.org/10.15083/0000033949.
  9. Katebi, J., Shoaei-parchin, M., Shariati, M., Trung, N.T. and Khorami, M. (2020), "Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures", Eng. Comput., 36(4), 1539-1558. https://doi.org/10.1007/s00366-019-00780-7.
  10. Kawahara, M. and Fukazawa, K. (1989), "Optimal control of structure subject to earthquake loading using dynamic programming", Struct. Eng. Earthq. Eng., 6(1), 179-190. https://doi.org/10.2208/jscej.1989.404_201.
  11. Korkmaz, S. (2011), "A review of active structural control: challenges for engineering informatics", Comput. Struct., 89(23-24), 2113-2132. https://doi.org/10.1016/j.compstruc.2011.07.010.
  12. Miyamoto, K., She, J., Sato, D. and Yasuo, N. (2018), "Automatic determination of LQR weighting matrices for active structural control", Eng. Struct., 174, 308-321. https://doi.org/10.1016/j.engstruct.2018.07.009.
  13. Peng, Y.B. and Li, J. (2019), Stochastic Optimal Control of Structures, Springer, Singapore.
  14. Rad, A.B., Nouri, M., Katebi, J. and Ghasemi, S.A.M. (2021), "A developed model predictive control scheme for vibration attenuation of building structures", Smart Struct. Syst., 27(4), 691-703. https://doi.org/10.12989/sss.2021.27.4.691.
  15. Rodellar, J., Barbat, A.H. and Martin-Sanchez, J.M. (1987), "Predictive control of structures", J. Eng. Mech., 113(6), 797-812. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:6(797).
  16. Sato, T. and Toki, K. (1990), "Active control of seismic response of structures", J. Intel. Mater. Syst. Struct., 1(4), 447-475. https://doi.org/10.1177/1045389X9000100406.
  17. Shinozuka, M. (1972), "Monte-Carlo solution of structural dynamics", Comput. Struct., 2(5-6), 855-874. https://doi.org/10.1016/0045-7949(72)90043-0.
  18. Soong, T.T. (1990), Active Structural Control: Theory and Practice, John Wiley and Sons, New York, NY, USA.
  19. Soong, T.T. and Spencer, B.F. (2002), "Supplemental energy dissipation: State-of-the-art and state-of-the-practice", Eng. Struct., 24(3), 243-259. https://doi.org/10.1016/S0141-0296(01)00092-X.
  20. Spencer, B.F. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Eng. Mech., 129(7), 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845).
  21. Spencer, B.F., Dyke, S.J. and Deoskar, H.S. (1998), "Benchmark problems in structural control: Part II-Active tendon system", Earthq. Eng. Struct. Dyn., 27(11), 1141-1147. https://doi.org/10.1002/(SICI)1096-9845(1998110)27:11<1141::AID-EQE775>3.0.CO;2-S.
  22. Su, C., Han, D.J., Yan, Q.S., Au, F.T.K., Tham, L.G., Lee, P.K.K., Lam, K.M. and Wong, K.Y. (2003), "Wind-induced vibration analysis of the Hong Kong Ting Kau bridge", Struct. Build., 156(3), 263-272. https://doi.org/10.1680/stbu.2003.156.3.263.
  23. Su, C., Li, B.M., Chen, T.C. and Dai, X.H. (2018), "Stochastic optimal design of nonlinear viscous dampers for large-scale structures subjected to non-stationary seismic excitations based on dimension-reduced explicit method", Eng. Struct., 175, 217-230. https://doi.org/10.1016/j.engstruct.2018.08.028.
  24. Su, C., Liu, X.L., Li, B.M. and Huang, Z.J. (2018), "Inelastic response analysis of bridges subjected to non-stationary seismic excitations by efficient MCS based on explicit time-domain method", Nonlin. Dyn., 94(3), 2097-2114. https://doi.org/10.1007/s11071-018-4477-6.
  25. Su, C., Xian, J.H. and Huang, H. (2021), "An iterative equivalent linearization approach for stochastic sensitivity analysis of hysteretic systems under seismic excitations based on explicit time-domain method", Comput. Struct., 242, 106396. https://doi.org/10.1016/j.compstruc.2020.106396.
  26. Su, C. and Xu, R. (2014), "Random vibration analysis of structures by a time-domain explicit formulation method", Struct. Eng. Mech., 52(2), 239-260. https://doi.org/10.12989/sem.2014.52.2.239.
  27. Svanberg, K. (1987), "The method of moving asymptotes-a new method for structural optimization", Int. J. Numer. Meth. Eng., 24(2), 359-373. https://doi.org/10.1002/nme.1620240207.
  28. Xian, J.H., Su, C. and Guo, H.Z. (2021), "Seismic reliability analysis of energy-dissipation structures by combining probability density evolution method and explicit time-domain method", Struct. Saf., 88, 102010. https://doi.org/10.1016/j.strusafe.2020.102010.
  29. Yang, C.S., Chung, L.L., Wu, L.Y. and Chung, N.H. (2011), "Modified predictive control of structures with direct output feedback", Struct. Control. Hlth., 18(8), 922-940. https://doi.org/10.1002/stc.411.
  30. Yang, J.N., Akbarpour, A. and Ghaemmaghami, P. (1987), "New optimal control algorithms for structural control", J. Eng. Mech., 113(9), 1369-1386. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:9(1369).
  31. Yanik, A. and Aldemir, U. (2019), "A short review on the active control approaches in earthquake engineering at the last 10 years (2008-2018)", Int. J. Eng. Tech., 11(2), 111-118. https://doi.org/10.7763/IJET.2019.V11.1132.