References
- Adiyaman, G., Yaylaci, M. and Birinci, A. (2015), "Analytical and finite element solution of a receding contact problem", Struct. Eng. Mech., 54(1), 69-85. https://doi.org/10.12989/sem.2015.54.1.069
- Ahmed, R.A., Al-Maliki, A.F.H. and Faleh, N.M. (2020), "Dynamic characteristics of multi-phase crystalline porous shells with using strain gradient elasticity", Adv. Nano Res., 8(2), 157-167. https://doi.org/10.12989/anr.2020.8.2.157.
- Akbas, S.D. (2017), "Post-buckling responses of functionally graded beams with porosities", Steel Compos. Struct., 24(5), 579-589. https://doi.org/10.12989/scs.2017.24.5.579.
- Akbas, S.D., Fageehi, Y.A., Assie, A.E. and Eltaher, M.A. (2022), "Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load", Eng. Comput., 38(1), 365-377. https://doi.org/10.1007/s00366-020-01070-3.
- Alipour, M.M. and Shariyat, M. (2014), "An analytical global-local Taylor transformation-based vibration solution for annular FGM sandwich plates supported by nonuniform elastic foundations", Arch. Civil Mech. Eng., 14(1), 6-24. https://doi.org/10.1016/j.acme.2013.05.006.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
- Avcar, M. and Mohammed, W. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11, 232. https://doi.org/10.1007/s12517-018-3579-2.
- Bamdad, M., Mohammadimehr, M. and Alambeigi, K. (2020), "Bending and buckling analysis of sandwich Reddy beam considering shape memory alloy wires and porosity resting on Vlasov", Steel Compos. Struct., 36(6), 671-687. https://doi.org/10.12989/scs.2020.36.6.671.
- Behravan Rad, A. and Shariyat, M. (2015), "Three-dimensional magneto-elastic analysis of asymmetric variable thickness porous FGM circular plates with non-uniform tractions and Kerr elastic foundations", Compos. Struct., 125, 558-574. https://doi.org/10.1016/j.compstruct.2015.02.049.
- Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755.
- Bouhadra, A., Menasria, A. and Rachedi, M.A. (2021), "Boundary conditions effect for buckling analysis of porous functionally graded nanobeam", Adv. Nano Res., 10(4), 313-325. https://doi.org/10.12989/anr.2021.10.4.313.
- Brischetto, S. (2009), "Classical and mixed advanced models for sandwich plates embedding functionally graded cores", J. Mech. Mater. Struct., 4, 13-33. https://doi.org/10.2140/jomms.2009.4.13.
- Burlayenko, V.N. and Sadowski, T. (2020), "Free vibrations and static analysis of functionally graded sandwich plates with three-dimensional finite elements", Meccanica, 55(4), 815-832. https://doi.org/10.1007/s11012-019-01001-7.
- Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. Part B: Eng., 42(2), 123-133. https://doi.org/10.1016/j.compositesb.2010.10.005.
- Chen, M., Jin, G., Ma, X., Zhang, Y., Ye, T. and Liu, Z. (2018), "Vibration analysis for sector cylindrical shells with bidirectional functionally graded materials and elastically restrained edges", Compos. Part B: Eng., 153, 346-363. https://doi.org/10.1016/j.compositesb.2018.08.129.
- Daikh, A.A. and Zenkour, A. (2019), "Effect of porosity on the bending analysis of various functionally graded sandwich plates", Mater. Res. Expr., 6, 65703. https://doi.org/10.1088/2053-1591/ab0971.
- Ebrahimi, F., Jafari, A. and Selvamani, R. (2020), "Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment", Adv. Nano Res., 8(1), 83-94. https://doi.org/10.12989/anr.2020.8.1.083.
- Ebrahimi, F. and Seyfi, A. (2022), "Studying propagation of wave in metal foam cylindrical shells with graded porosities resting on variable elastic substrate", Eng. Comput., 38(1), 379-395. https://doi.org/10.1007/s00366-020-01069-w.
- Elmalich, D. and Rabinovitch, O. (2012), "A high-order finite element for dynamic analysis of soft-core sandwich plates", J. Sandw. Struct. Mater., 14(5), 525-555. https://doi.org/10.1177/1099636212449841.
- Fenjan, R.M., Moustafa, N.M. and Faleh, N.M. (2020a), "Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM", Adv. Nano Res., 8(4), 283-292. https://doi.org/10.12989/anr.2020.8.4.283.
- Fenjan, R.M., Moustafa, N.M. and Faleh, N.M. (2020b), "Scaledependent thermal vibration analysis of FG beams having porosities based on DQM", Adv. Nano Res., 8(4), 283-292. https://doi.org/10.12989/anr.2020.8.4.283.
- Ferreira, A.J.M., Batra, R.C., Roque, C.M.C., Qian, L.F. and Martins, P.A.L.S. (2005), "Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method", Compos. Struct., 69(4), 449-457. https://doi.org/10.1016/j.compstruct.2004.08.003.
- Hadj, B., Rabia, B. and Daouadji, T.H. (2019), "Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations", Struct. Eng. Mech., 72(1), 61-70. https://doi.org/10.12989/sem.2019.72.1.061.
- Hadji, L., Madan, R., Bhowmick, S. and Tounsi, A. (2021), "A n-order refined theory for free vibration of sandwich beams with functionally graded porous layers", Struct. Eng. Mech., 79(3), 279-288. https://doi.org/10.12989/sem.2021.79.3.279.
- Hamed, M.A., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 36(4), 1929-1946. https://doi.org/10.1007/s00366-020-01023-w.
- Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
- Jung, W.Y., Park, W.T. and Han, S.C. (2014), "Bending and vibration analysis of S-FGM microplates embedded in Pasternak elastic medium using the modified couple stress theory", Int. J. Mech. Sci., 87, 150-162. https://doi.org/10.1016/j.ijmecsci.2014.05.025.
- Karama, M., Afaq, K.S. and Mistou, S. (2009), "A new theory for laminated composite plates", Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 223(2), 53-62. https://doi.org/10.1243/14644207JMDA189.
- Keddouri, A., Hadji, L. and Tounsi, A. (2019), "Static analysis of functionally graded sandwich plates with porosities", Adv. Mater. Res., 8(3), 155-177. https://doi.org/10.12989/amr.2019.8.3.155.
- Khaniki, H.B., Ghayesh, M.H., Hussain, S. and Amabili, M. (2022), "Porosity, mass and geometric imperfection sensitivity in coupled vibration characteristics of CNT-strengthened beams with different boundary conditions", Eng. Comput., 38(3), 2313-2339. https://doi.org/10.1007/s00366-020-01208-3.
- Kirchhoff, G. (1850), "uber das Gleichgewicht und die Bewegung einer elastischen Scheibe", J. Fur die Reine und Angewandte Mathematik (Crelles J.), 1850(40), 51-88. https://doi.org/10.1515/crll.1850.40.51.
- Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B: Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
- Liang, D., Wu, Q., Lu, X. and Tahouneh, V. (2020), "Vibration behavior of trapezoidal sandwich plate with functionally graded-porous core and graphene platelet-reinforced layers", Steel Compos. Struct., 36(1), 47-62. https://doi.org/10.12989/scs.2020.36.1.047.
- Liu, J., Hao, C., Ye, W., Yang, F. and Lin, G. (2021), "Free vibration and transient dynamic response of functionally graded sandwich plates with power-law nonhomogeneity by the scaled boundary finite element method", Comput. Meth. Appl. Mech. Eng., 376, 113665. https://doi.org/10.1016/j.cma.2021.113665.
- Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2012), "A new trigonometric layerwise shear deformation theory for the finite element analysis of laminated composite and sandwich plates", Comput. Struct., 94-95, 45-53. https://doi.org/10.1016/j.compstruc.2011.12.003.
- Martinez-Paneda, E. (2019), "On the finite element implementation of functionally graded materials", Mater., 12(2). https://doi.org/10.3390/ma12020287.
- Messaoudi, K., Boukhalfa, A. and Beldjelili, Y. (2018), "Three dimensional finite elements modeling of FGM plate bending using UMAT", Struct. Eng. Mech., 66(4), 487-494. https://doi.org/10.12989/sem.2018.66.4.487.
- Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18(1), 31-38. https://doi.org/10.1007/978-1-4613-8865-4_29.
- Mohammadimehr, M. and Meskini, M. (2020), "Analysis of porous micro sandwich plate: Free and forced vibration under magneto-electro-elastic loadings", Adv. Nano Res., 8(1), 69-82. https://doi.org/10.12989/anr.2020.8.1.069.
- Mohammadzadeh, B., Choi, E. and Kim, D. (2019), "Vibration of sandwich plates considering elastic foundation, temperature change and FGM faces", Struct. Eng. Mech., 70(5), 591-600. https://doi.org/10.12989/sem.2019.70.4.601
- Natarajan, S. and Manickam, G. (2012), "Bending and vibration of functionally graded material sandwich plates using an accurate theory", Finite Elem. Anal. Des., 57, 32-42. https://doi.org/10.1016/j.finel.2012.03.006.
- Nejadi, M.M. and Mohammadimehr, M. (2020), "Buckling analysis of nano composite sandwich Euler-Bernoulli beam considering porosity distribution on elastic foundation using DQM", Adv. Nano Res., 8(1), 59-68. https://doi.org/10.12989/anr.2020.8.1.059.
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2013), "Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique", Compos. Part B: Eng., 44(1), 657-674. https://doi.org/10.1016/j.compositesb.2012.01.089.
- Nguyen, T.H., Nguyen, T.T., Tran, T.T. and Pham, Q.H. (2023), "Research on the mechanical behaviour of functionally graded porous sandwich plates using a new C1 finite element procedure", Result. Eng., 17, 100817. https://doi.org/10.1016/j.rineng.2022.100817.
- Oner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.
- Ramteke, P.M., Panda, S.K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875. https://doi.org/10.12989/scs.2019.33.6.865.
- Reddy, J. (2000), "Analysis of functionally graded plates", International Journal for Numerical Methods in Engineering - Int. J. Numer. Meth. Eng., 47, 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/33.0.CO,2-8.
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., 12(2), A69-A77. https://doi.org/10.1115/1.4009435.
- Sadoughifar, A., Farhatnia, F., Izadinia, M. and Talaeetaba, S.B. (2020), "Size-dependent buckling behaviour of FG annular/circular thick nanoplates with porosities resting on Kerr foundation based on new hyperbolic shear deformation theory", Struct. Eng. Mech., 73(3), 225-238. https://doi.org/10.12989/sem.2020.73.3.225.
- Safaei, B. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compos. Struct., 35(5), 659-670. https://doi.org/10.12989/scs.2020.35.5.659.
- Sarathchandra, D.T., Kanmani Subbu, S. and Venkaiah, N. (2018), "Functionally graded materials and processing techniques: An art of review", Mater. Today: Proc., 5(10), 21328-21334. https://doi.org/10.1016/j.matpr.2018.06.536.
- Shariati, A., Ebrahimi, F., Karimiasl, M., Vinyas, M. and Toghroli, A. (2020), "On transient hygrothermal vibration of embedded viscoelastic flexoelectric/piezoelectric nanobeams under magnetic loading", Adv. Nano Res., 8(1), 49-58. https://doi.org/10.12989/anr.2020.8.1.049.
- She, G.L., Liu, H.B. and Karami, B. (2020), "On resonance behavior of porous FG curved nanobeams", Steel Compos. Struct., 36(2), 179-186. https://doi.org/10.12989/scs.2020.36.2.179.
- Shiyekar, S.M. and Lavate, P. (2015), "Flexure of power law governed functionally graded plates using ABAQUS UMAT", Aerosp. Sci. Technol., 46, 51-59. https://doi.org/10.1016/j.ast.2015.06.021.
- Slimane, M., Adda, H.M., Mohamed, M., Hakima, B., Hadjira, H. and Sabrina, B. (2020), "Effects of even pores distribution of functionally graded plate porous rectangular and square", Procedia Struct. Integr., 26, 35-45. https://doi.org/10.1016/j.prostr.2020.06.006
- Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mechanica, 94(3), 195-220. https://doi.org/10.1007/BF01176650.
- Tabatabaei, S.J.S. and Fattahi, A.M. (2020), "A finite element method for modal analysis of FGM plates", Mech. Bas. Des. Struct. Mach., 50(4), 1111-1122. https://doi.org/10.1080/15397734.2020.1744004.
- Thai, H.T. and Choi, D.H. (2013), "A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates", Compos. Struct., 101, 332-340. https://doi.org/10.1016/j.compstruct.2013.02.019.
- Thai, H.T. and Kim, S.E. (2013), "A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates", Compos. Struct., 99, 172-180. https://doi.org/10.1016/j.compstruct.2012.11.030.
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
- Tran, T.T., Pham, Q.H. and Nguyen-Thoi, T. (2021), "Static and free vibration analyses of functionally graded porous variable-thickness plates using an edge-based smoothed finite element method", Defen. Technol., 17(3), 971-986. https://doi.org/10.1016/j.dt.2020.06.001.
- Van Vinh, P. and Huy, L.Q. (2021), "Finite element analysis of functionally graded sandwich plates with porosity via a new hyperbolic shear deformation theory", Defen. Technol., 18(3), 490-508. https://doi.org/10.1016/j.dt.2021.03.006.
- Vel, S. and Batra, R.C. (2002), "Exact solution for thermoelastic deformations of functionally graded thick rectangular plates", AIAA J., 40(7), 1421-1433. https://doi.org/10.2514/3.15212.
- Wattanasakulpong, N., Prusty, G., Kelly, D. and Hoffman, M. (2011), "Free vibration analysis of layered functionally graded beams with experimental validation", Mater. Des., 36, 182-190. https://doi.org/10.1016/j.matdes.2011.10.049.
- Wattanasakulpong, N. and Ungbhakorn, V. (2014). Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
- Yan, K., Zhang, Y., Cai, H. and Tahouneh, V. (2020), "Vibrational characteristic of FG porous conical shells using Donnell's shell theory", Steel Compos. Struct., 35(2), 249-260. https://doi.org/10.12989/scs.2020.35.2.249.
- Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2021a), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. https://doi.org/10.12989/cac.2021.27.3.199.
- Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.107.
- Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
- Yaylaci, M., Yayli, M., Yaylaci, E.U., Olmez, H. and Birinci, A. (2021b), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.
- Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.
- Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325.
- Yaylaci, M., Eyuboglu, A., Adiyaman, G., Yaylaci, E.U., Oner, E. and Birinci, A. (2021), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154, 103730. https://doi.org/10.1016/j.mechmat.2020.103730.
- Yin, Z., Gao, H. and Lin, G. (2021), "Bending and free vibration analysis of functionally graded plates made of porous materials according to a novel the semi-analytical method", Eng. Anal. Bound. Elem., 133, 185-199. https://doi.org/10.1016/j.enganabound.2021.09.006.
- Zargaripoor, A., Daneshmehr, A., Isaac Hosseini, I. and Rajabpoor, A. (2018), "Free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory using finite element method", J. Comput. Appl. Mech., 49(1), 86-101. https://doi.org/10.22059/jcamech.2018.248906.223.
- Zenkour, A.M. (2018), "A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities", Compos. Struct., 201, 38-48. https://doi.org/10.1016/j.compstruct.2018.05.147.
- Zenkour, A.M. (2013), "Bending analysis of functionally graded sandwich plates using a simple four-unknown shear and normal deformations theory", J. Sandw. Struct. Mater., 15(6), 629-656. https://doi.org/10.1177/1099636213498886.
- Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009.
- Zenkour, A.M. (2005a), "A comprehensive analysis of functionally graded sandwich plates: Part 2-Buckling and free vibration", Int. J. Solid. Struct., 42(18-19), 5243-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016.
- Zenkour, A.M. (2005b), "A comprehensive analysis of functionally graded sandwich plates: Part 1-Deflection and stresses", Int. J. Solid. Struct., 42(18), 5224-5242. https://doi.org/10.1016/j.ijsolstr.2005.02.015.
- Zenkour, A.M. and Alghamdi, N.A. (2008), "Thermoelastic bending analysis of functionally graded sandwich plates", J. Mater. Sci., 43(8), 2574-2589. https://doi.org/10.1007/s10853-008-2476-6.
- Zenkour, A.M. and Sobhy, M. (2010), "Thermal buckling of various types of FGM sandwich plates", Compos. Struct., 93(1), 93-102. https://doi.org/10.1016/j.compstruct.2010.06.012.
- Zghal, S., Frikha, A. and Dammak, F. (2018), "Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels", Compos. Part B: Eng., 150, 165-183. https://doi.org/10.1016/j.compositesb.2018.05.037.
- Zhou, C., Zhang, Z., Zhang, J., Fang, Y. and Tahouneh, V. (2020), "Vibration analysis of FG porous rectangular plates reinforced by graphene platelets", Steel Compos. Struct., 34(2), 215-226. https://doi.org/10.12989/scs.2020.34.2.215.
- Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of ZrO2-NiCr Functionally Graded Material by Powder Metallurgy", Mater. Chem. Phys., 68, 130-135. https://doi.org/10.1016/S0254-0584(00)00355-2.
- Zine, A., Bousahla, A.A., Bourada, F., Benrahou, K.H., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R. and Tounsi, A. (2020), "Bending analysis of functionally graded porous plates via a refined shear deformation theory", Comput. Concrete, 26(1), 63-74. https://doi.org/10.12989/cac.2020.26.1.063.