DOI QR코드

DOI QR Code

Composite aluminum-slab RC beam bonded by a prestressed hybrid carbon-glass composite material

  • Rabahi Abderezak (Laboratory of Geomatics and Sustainable Development, University of Tiaret) ;
  • Tahar Hassaine Daouadji (Laboratory of Geomatics and Sustainable Development, University of Tiaret) ;
  • Bensatallah Tayeb (Laboratory of Geomatics and Sustainable Development, University of Tiaret)
  • 투고 : 2021.10.15
  • 심사 : 2023.01.17
  • 발행 : 2023.03.10

초록

This paper presents a careful theoretical investigation into interfacial stresses in composite aluminum-slab reinforced concrete beam bonded by a prestressed hybrid carbon-glass composite material. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, i.e., the aluminum beam, the slab reinforced concrete, the hybrid carbon-glass composite plate and the adhesive layer. The theoretical predictions are compared with other existing solutions. Numerical results from the present analysis are presented both to demonstrate the advantages of the present solution over existing ones and to illustrate the main characteristics of interfacial stress distributions. It is shown that the stresses at the interface are influenced by the material and geometry parameters of the composite beam. This research is helpful for the understanding on mechanical behaviour of the interface and design of the hybrid structures.

키워드

과제정보

This research was supported by the Algerian Ministry of Higher Education and Scientific Research (MESRS) as part of the grant for the PRFU research project n° A01L02UN140120200002 and by the University of Tiaret, in Algeria.

참고문헌

  1. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021a), "Aluminum beam reinforced by externally bonded composite materials", Adv. Mater. Res., 10(1), 23-44. http://doi.org/10.12989/amr.2021.10.1.023.
  2. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021c), "Fiber reinforced polymer in civil engineering: Shear lag effect on damaged RC cantilever beams bonded by prestressed plate", Couple. Syst. Mech., 10(4), 299-316. http://doi.org/10.12989/csm.2021.10.4.299.
  3. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021e), "Modeling and analysis of the imperfect FGM-damaged RC hybrid beams", Adv. Comput. Des., 6(2), 117-133. http://doi.org/10.12989/acd.2021.6.2.117.
  4. Abderezak, R., Daouadji, T.H. and Rabia, B. (2022b), "Analysis and modeling of hyperstatic RC beam bonded by composite plate symmetrically loaded and supported", Steel Compos. Struct., 45(4), 591-603. https://doi.org/10.12989/scs.2022.45.4.591.
  5. Al-Fasih, M.Y., Kueh, A.B.H. and Ibrahim, M.H.W. (2020), "Flexural behavior of sandwich beams with novel triaxially woven fabric composite skins", Steel Compos. Struct., 34(2), 299-308. https://doi.org/10.12989/scs.2020.34.2.299.
  6. Al-Furjan, M.S.H., Habibi, M., Ghabussi, A., Safarpour, H., Safarpour, M. and Tounsi, A. (2021), "Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory", Eng. Struct., 228(1), 111496. https://doi.org/10.1016/j.engstruct.2020.111496.
  7. Ali, Y.A.Z. (2018), "Flexural behavior of FRP strengthened concrete-wood composite beams", Ain Shams Eng. J., 9(4), 3419-3424. https://doi.org/10.1016/j.asej.2018.06.003.
  8. Benachour, A., Benyoucef, S. and Tounsi, A. (2008), "Interfacial stress analysis of steel beams reinforced with bonded prestressed FRP plate", Eng. Struct., 30, 3305-3315. https://doi.org/10.1016/j.engstruct.2008.05.007.
  9. Benferhat, R., Daouadji, T.H. and Abderezak, R. (2021), "Effect of porosity on fundamental frequencies of FGM sandwich plates", Compos. Mater. Eng., 3(1), 25-40. http://doi.org/10.12989/cme.2021.3.1.025.
  10. Benferhat, R., Daouadji, T.H., Mansour, M.S. and Hadji, L. (2016), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on WinklerPasternak foundations", Earthq. Struct., 10(5), 1429-1449. https://doi.org/10.12989/eas.2016.10.5.1033.
  11. Botkin, M. (2000), "Modelling and optimal design of a carbon fibre reinforced composite automotive roof", Eng. Comput., 16, 16-23. https://doi.org/10.1007/s003660050033.
  12. Bouazaoui, L., Perrenot, G., Delmas, Y. and Li, A. (2007), "Experimental study of bonded steel concrete composite structures", J. Constr. Steel Res., 63, 1268-1278. http://doi.org/10.1016/j.jcsr.2006.11.002.
  13. Daouadji, T.H., Abderezak, R. and Rabia, B. (2022), "New technique for repairing circular steel beams by FRP plate", Adv. Mater. Res., 11(3), 171-190. https://doi.org/10.12989/amr.2022.11.3.171.
  14. Dar, M.A., Subramanian, N., Dar, D.A., Dar, A.R., Anbarasu, M., Lim, J.B. and Mahjoubi, S. (2020), "Flexural strength of coldformed steel built-up composite beams with rectangular compression flanges", Steel Compos. Struct., 34(2), 171-188. https://doi.org/10.12989/scs.2020.34.2.171.
  15. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  16. Fenjan, R.M., Faleh, N.M. and Ahmed, R.A. (2020), "Geometrical imperfection and thermal effects on nonlinear stability of microbeams made of graphene-reinforced nano-composites", Adv. Nano Res., 9(3), 147-156. https://doi.org/10.12989/anr.2020.9.3.147.
  17. Gao, X.L., Wang, J.Y. and Yan, J.B. (2020), "Experimental studies of headed stud shear connectors in UHPC steel composite slabs", Struct. Eng. Mech., 74(5), 657-670. https://doi.org/10.12989/sem.2020.74.5.657.
  18. Guenaneche, B. and Tounsi, A. (2014), "Effect of shear deformation on interfacial stress analysis in plated beams under arbitrary loading", Adhes. Adhesiv., 48, 1-13. https://doi.org/10.1016/j.ijadhadh.2013.09.016.
  19. Hadj, B., Rabia, B. and Daouadji, T.H. (2019), "Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations", Struct. Eng. Mech., 72(1), 823-832. https://doi.org/10.12989/sem.2019.72.1.061.
  20. Hadj, B., Rabia, B. and Daouadji, T.H. (2021), "Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity", Couple. Syst. Mech., 10(1), 61-77. http://doi.org/10.12989/csm.2021.10.1.061.
  21. Hamrat, M., Bouziadi, F., Boulekbache, B., Daouadji, T.H., Chergui, S., Labed, A. and Amziane, S. (2020), "Experimental and numerical investigation on the deflection behavior of precracked and repaired reinforced concrete beams with fiberreinforced polymer", Constr. Build. Mater., 249, 118745. http://doi.org/10.1016/j.conbuildmat.2020.118745.
  22. Hassaine Daouadji, T. (2013), "Analytical analysis of the interfacial stress in damaged reinforced concrete beams strengthened by bonded composite plates", Strength Mater., 45(5), 587-597. https://doi.org/10.1007/s11223-013-9496-4.
  23. Hassaine Daouadji, T. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.
  24. Hassaine Daouadji T., Rabahi A. and Benferhat R. (2021a), "Hyperstatic steel structure strengthened with prestressed carbon/glass hybrid laminated plate", Couple. Syst. Mech., 10(5), 393-414. https://doi.org/10.12989/csm.2021.10.5.393.
  25. Hassaine Daouadji T., Rabahi A. and Benferhat R. (2021d), "A new model for adhesive shear stress in damaged RC cantilever beam strengthened by composite plate taking into account the effect of creep and shrinkage", Struct. Eng. Mech., 79(5), 531-540. http://doi.org/10.12989/sem.2021.79.5.531.
  26. Hassaine Daouadji T., Rabahi A., Benferhat R. and Tounsi, A. (2021b), "Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses", Couple. Syst. Mech., 10(2), 161-184. http://doi.org/10.12989/csm.2021.10.2.161.
  27. Hassaine Daouadji T., Rabahi A., Benferhat R. and Tounsi, A. (2021c), "Impact of thermal effects in FRP-RC hybrid cantilever beams", Struct. Eng. Mech., 78(5), 573-583. http://doi.org/10.12989/sem.2021.78.5.573.
  28. Heidari, F., Afsari, A. and Janghorban, M. (2020), "Several models for bending and buckling behaviors of FG-CNTRCs with piezoelectric layers including size effects", Adv. Nano Res., 9(3), 193-210. https://doi.org/10.12989/anr.2020.9.3.193.
  29. Henni, M.A.B., Abbes, B., Daouadji, T.H., Abbes, F. and Adim, B. (2021), "Numerical modeling of hygrothermal effect on the dynamic behavior of hybrid composite plates", Steel Compos. Struct., 39(6), 751-763. http://doi.org/10.12989/scs.2021.39.6.751.
  30. Hirwani, C.K. and Panda, S.K. (2020), "Nonlinear transient analysis of delaminated curved composite structure under blast/pulse load", Eng. Comput., 36, 1201-1214. https://doi.org/10.1007/s00366-019-00757-6.
  31. Hosny, A., Shaheen, H., Abdelrahman, A. and Elafandy, T. (2006), "Performance of reinforced concrete beams strengthened by hybrid FRP laminates", Cement Concrete Compos., 28, 906-913. https://doi:10.1016/j.cemconcomp.2006.07.016.
  32. Jalal, M., Grasley, Z. and Gurganus, C. (2022), "A new nonlinear formulation-based prediction approach using artificial neural network (ANN) model for rubberized cement composite", Eng. Comput., 38, 283-300. https://doi.org/10.1007/s00366-020-01054-3.
  33. Kablia, A., Benferhat, R. and Hassaine Daouadji, T. (2022), "Dynamic of behavior for imperfect FGM plates resting on elastic foundation containing various distribution rates of porosity: Analysis and modeling", Couple. Syst. Mech., 11(5), 389-409. https://doi.org/10.12989/csm.2022.11.5.389.
  34. Kablia, A., Benferhat, R., Hassaine Daouadji, T. and Bouzidene, A. (2020), "Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions", Couple. Syst. Mech., 9(6), 575-597. http://doi.org/10.12989/csm.2020.9.6.575.
  35. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Bedia, E.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and Free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  36. Kalita, K., Dey, P. and Haldar, S. (2020), "Optimizing frequencies of skew composite laminates with metaheuristic algorithms", Eng. Comput., 36, 741-761. https://doi.org/10.1007/s00366-019-00728-x.
  37. Khadimallah, M.A., Hussain, M., Khedher, K.M., Naeem, M.N. and Tounsi, A. (2020), "Backward and forward rotating of FG ring support cylindrical shells", Steel Compos. Struct., 37(2), 137-150. http://doi.org/10.12989/scs.2020.37.2.137.
  38. Nejadi, M.M. and Mohammadimehr, M. (2020), "Buckling analysis of nano composite sandwich Euler-Bernoulli beam considering porosity distribution on elastic foundation using DQM", Adv. Nano Res., 8(1), 59-68. https://doi.org/10.12989/anr.2020.8.1.059.
  39. Pereira, M.F., De Nardin, S. and El Debs, A.L. (2020), "Investigation on the flexural behavior of an innovative Ushaped steel-concrete composite beam", Steel Compos. Struct., 34(3), 441-452. https://doi.org/10.12989/scs.2020.34.3.441.
  40. Pereira, M.F., De Nardin, S. and El Debs, A.L. (2020), "Partially encased composite columns using fiber reinforced concrete: Experimental study", Steel Compos. Struct., 34(6), 909-927. https://doi.org/10.12989/scs.2020.34.6.909.
  41. Qi, J., Cheng, Z., Wang, J., Zhu, Y. and Li, W. (2020), "Full-scale testing on the flexural behavior of an innovative dovetail UHPC joint of composite bridges", Struct. Eng. Mech., 75(1), 49-57. https://doi.org/10.12989/sem.2020.75.1.049.
  42. Qin, Y., Chen, X., Xi, W., Zhu, X. and Chen, Y. (2020), "Eccentric compressive behavior of novel composite walls with T-section", Steel Compos. Struct., 35(4), 495-508. https://doi.org/10.12989/scs.2020.35.4.495.
  43. Rabahi, A., Hassaine Daouadji, T., Benferhat, R. and Tounsi, A. (2021b), "New proposal for flexural strengthening of a continuous I-steel beam using FRP laminate under thermomechanical loading", Struct. Eng. Mech., 78(6), 703-714. http://doi.org/10.12989/sem.2021.78.6.703.
  44. Rabahi, A., Hassaine Daouadji, T. and Benferhat, R. (2021d), "New solution for damaged porous RC cantilever beams strengthening by composite plate", Adv. Mater. Res., 10(3), 169-194. http://doi.org/10.12989/amr.2021.10.3.169.
  45. Rabia, B., Daouadji, T.H. and Abderezak, R. (2020), "Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: Study and analysis", Adv. Mater. Res., 9(4), 265-287. http://doi.org/10.12989/amr.2020.9.4.265.
  46. Rabia, B., Tahar, H.D. and Abderezak, R. (2020), "Thermomechanical behavior of porous FG plate resting on the WinklerPasternak foundation", Couple. Syst. Mech., 9(6), 499-519. http://doi.org/10.12989/csm.2020.9.6.499.
  47. Razavian, L., Naghipour, M., Shariati, M. and Safa, M. (2020), "Experimental study of the behavior of composite timber columns confined with hollow rectangular steel sections under compression", Struct. Eng. Mech., 74(1), 145-156. https://doi.org/10.12989/sem.2020.74.1.145.
  48. Satankar, R.K., Sharma, N., Ramteke, P.M., Panda, S.K. and Mahapatra, S.S. (2020), "Acoustic responses of natural fibre reinforced nanocomposite structure using multiphysics approach and experimental validation", Adv. Nano Res., 9(4), 263-276. https://doi.org/10.12989/anr.2020.9.4.263.
  49. Shariati, A., Qaderi, S. and Ebrahimi, F. (2022), "On buckling characteristics of polymer composite plates reinforced with graphene platelets", Eng. Comput., 38, 513-524. https://doi.org/10.1007/s00366-020-00992-2.
  50. Shariati, M., Tahmasbi, F., Mehrabi, P., Bahadori, A. and Toghroli, A. (2020), "Monotonic behavior of C and L shaped angle shear connectors within steel-concrete composite beams: An experimental investigation", Steel Compos. Struct., 35(2), 237-247. https://doi.org/10.12989/scs.2020.35.2.237.
  51. Smith, S.T. and Teng, J.G., (2002), "Interfacial stresses in plated beams", Eng. Struct., 23(7), 857-871. http://doi.org/10.1016/S0141-0296(00)00090-0.
  52. Subhani, M., Globa, A. and Moloney, J. (2020b), "Timber-FRP composite beam subjected to negative bending", Struct. Eng. Mech., 73(3), 353-365. https://doi.org/10.12989/sem.2020.73.3.353.
  53. Subhani, M., Kabir, M.I. and Al-Ameri, R. (2020a), "Strengthening of steel-concrete composite beams with composite slab", Steel Compos. Struct., 34(1), 91-105. https://doi.org/10.12989/scs.2020.34.1.091.
  54. Tahar, H.D., Tayeb, B., Abderezak, R. and Tounsi, A. (2021e), "New approach of composite wooden beam- reinforced concrete slab strengthened by external bonding of prestressed composite plate: Analysis and modeling", Struct. Eng. Mech., 78(3), 319-332. http://doi.org/10.12989/sem.2021.78.3.31.
  55. Tayeb, B. and Daouadji, T.H. (2020), "Improved analytical solution for slip and interfacial stress in composite steelconcrete beam bonded with an adhesive", Adv. Mater. Res., 9(2), 133-153. http://doi.org/10.12989/amr.2020.9.2.133.
  56. Tayeb, B., Daouadji, T.H., Abderezak, R. and Tounsi, A. (2021), "Structural bonding for civil engineering structures: New model of composite I-steel-concrete beam strengthened with CFRP plate", Steel Compos. Struct., 41(3), 417-435. https://doi.org/10.12989/scs.2021.41.3.417.
  57. Tlidji, Y., Benferhat, R. and Tahar, H.D. (2021a), "Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity", Struct. Eng. Mech., 77(2), 217-229. http://doi.org/10.12989/sem.2021.77.2.217.
  58. Tlidji, Y., Benferhat, R., Daouadji, T.H., Tounsi, A. and Trinh, L.C. (2022), "Free vibration analysis of FGP nanobeams with classical and non-classical boundary conditions using Statespace approach", Adv. Nano Res., 13(5), 453-463. https://doi.org/10.12989/anr.2022.13.5.453.
  59. Tlidji, Y., Benferhat, R., Trinh, L.C., Tahar, H.D. and Abdelouahed, T. (2021b), "New state-space approach to dynamic analysis of porous FG beam under different boundary conditions", Adv. Nano Res., 11(4), 347-359. https://doi.org/10.12989/anr.2021.11.4.347.
  60. Tormen, A.F., Pravia, Z.M.C., Ramires, F.B. and Kripka, M. (2020), "Optimization of steel-concrete composite beams considering cost and environmental impact", Steel Compos. Struct., 34(3), 409-421. https://doi.org/10.12989/scs.2020.34.3.409.
  61. Tounsi, A. (2006), "Improved theoretical solution for interfacial stresses in concrete beams strengthened with FRP plate", Int. J. Solid. Struct., 43(14-15), 4154-4174. https://doi.org/10.1016/j.ijsolstr.2005.03.074.
  62. Tounsi, A., Daouadji, T.H. and Benyoucef, S. (2008), "Interfacial stresses in FRP-plated RC beams: Effect of adherend shear deformations", Int. J. Adhes. Adhesiv., 29, 313-351. https://doi.org/10.1016/j.ijadhadh.2008.06.008.
  63. Wang, B., Huang, Q., Liu, X. and Ding, Y. (2020), "Study on stiffness deterioration in steel-concrete composite beams under fatigue loading", Steel Compos. Struct., 34(4), 499-509. https://doi.org/10.12989/scs.2020.34.4.499.
  64. Wang, Y.H., Yu, J., Liu, J.P., Zhou, B.X. and Chen, Y.F. (2020), "Experimental study on assembled monolithic steel-prestressed concrete composite beam in negative moment", J. Constr. Steel Res., 167, 105667. https://doi.org/10.1016/j.jcsr.2019.06.004.
  65. Yuan, C., Chen, W., Pham, T.M. and Hao, H. (2019), "Effect of aggregate size on bond behaviour between basalt fibre reinforced polymer sheets and concrete", Compos. Part B: Eng., 158(1), 459-474. https://doi.org/10.1016/j.compositesb.2018.09.089.
  66. Zhang, D.D., Yuan, J.X., Zhao, Q.L., Li, F., Gao, Y., Zhu, R. and Zhao, Z. (2020), "Static performance of a GFRP-metal string truss bridge subjected to unsymmetrical loads", Steel Compos. Struct., 35(5), 641-657. https://doi.org/10.12989/scs.2020.35.5.641.
  67. Zine, A., Bousahla, A.A., Bourada, F., Benrahou, K.H., Tounsi, A., Bedia, E.A., ... & Tounsi, A. (2020), "Bending analysis of functionally graded porous plates via a refined shear deformation theory", Comput. Concrete, 26(1), 63-74. http://doi.org/10.12989/cac.2020.26.1.063.
  68. Zohra, A., Benferhat, R., Tahar, H.D. and Tounsi, A. (2021), "Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations", Struct. Eng. Mech., 77(6), 797-807. http://doi.org/10.12989/sem.2021.77.6.797.