DOI QR코드

DOI QR Code

Delamination analysis of inhomogeneous viscoelastic beam of rectangular section subjected to torsion

  • Victor I. Rizov (Department of Technical Mechanics, University of Architecture, Civil Engineering and Geodesy)
  • Received : 2023.01.07
  • Accepted : 2023.02.23
  • Published : 2023.02.25

Abstract

This paper considers a delamination analysis of a statically undetermined inhomogeneous beam structure of rectangular section with viscoelastic behavior under torsion. The beam is built in at its two ends. The beam has two longitudinal inhomogeneous layers with a delamination crack between them. A notch is made in the upper crack arm. The external torsion moment applied on the beam is a function of time. Under these conditions, the beam has one degree of indeterminacy. In order to derive the strain energy release rate, first, the static indeterminacy is resolved. Then the strain energy release rate is obtained by analyzing the balance of the energy with considering the viscoelastic behavior. The strain energy release rate is found also by analyzing the compliance of the beam for checkup. Solution of the strain energy release rate in a beam without a notch in the upper crack arm is derived too. In this case, the beam has two degrees of static indeterminacy (the torsion moment in the upper crack arm is treated as an additional internal redundant unknown). A parametric investigation of the strain energy release rate is carried-out.

Keywords

References

  1. Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundationˮ, Arab. J. Geosci., 11, 232. https://doi.org/10.1007/s12517-018-3579-2.
  2. Butcher, R.J., Rousseau, C.E. and Tippur, H.V. (1999), "A functionally graded particulate composite: Measurements and failure analysisˮ, Acta Mater., 47(2), 259-268. https://doi.org/10.1016/S1359-6454(98)00305-X.
  3. Callioglu, H., Sayer, M. and Demir, E. (2011), "Stress analysis of functionally graded discs under mechanical and thermal loadsˮ, Ind. J. Eng. Mater. Sci., 18(2), 111-118.
  4. Callioglu, H., Sayer, M. and Demir, E. (2015), "Elastic-plastic stress analysis of rotating functionally graded discsˮ, Thin Wall. Struct., 94, 38-44. https://doi.org/10.1016/j.tws.2015.03.016.
  5. Demir, E., Callioglu, H. and Sayer, M. (2013), "Free vibration of symmetric FG sandwich Timoshenko beam with simply supported edgesˮ, Ind. J. Eng. Mater. Sci., 20(6), 515-521.
  6. Dolgov, N.A. (2005), "Determination of stresses in a two-layer coating", Strength Mater., 37(2), 422-431. https://doi.org/10.1007/s11223-005-0053-7.
  7. Dolgov, N.A. (2016), "analytical methods to determine the stress state in the substrate-coating system under mechanical loads", Strength Mater., 48(1), 658-667. https://doi.org/10.1007/s11223-016-9809-5.
  8. El-Galy, I.M., Saleh, B.I. and Ahmed, M.H. (2019), "Functionally graded materials classifications and development trends from industrial point of viewˮ, SN Appl. Sci., 1, 1378. https://doi.org/10.1007/s42452-019-1413-4.
  9. Galic, M., Grozdanic, G., Divic, V. and Marovic, P. (2022), "Parametric analyses of the influence of temperature, load duration, and interlayer thickness on a laminated glass structure exposed to out-of-plane loadingˮ, Crystal., 12(6), 838. https://doi.org/10.3390/cryst12060838.
  10. Gasik, M.M. (2010), "Functionally graded materials: bulk processing techniquesˮ, Int. J. Mater. Prod. Technol., 39(1-2), 20-29. https://doi.org/10.1504/IJMPT.2010.034257.
  11. Grozdanic, G., Galic, M. and Marovic, P. (2021), "Some aspects of the analyses of glass structures exposed to impact loadˮ, Couple. Syst. Mech., 10(6), 475-490. https://doi.org/10.12989/csm.2021.10.6.475.
  12. Han, X., Xu, Y.G. and Lam, K.Y. (2001), "Material characterization of functionally graded material by means of elastic waves and a progressive-learning neural network", Compos. Sci. Technol., 61(10), 1401-1411. https://doi.org/10.1016/S0266-3538(01)00033-1.
  13. Hedia, H.S., Aldousari, S.M., Abdellatif, A.K. and Fouda, N.A. (2014), "New design of cemented stem using functionally graded materials (FGM)ˮ, Biomed. Mater. Eng., 24(3), 1575-1588. https://doi.org/10.3233/BME-140962.
  14. Hirai, T. and Chen, L. (1999), "Recent and prospective development of functionally graded materials in Japanˮ, Mater. Sci. Forum, 308-311(4), 509-514. https://doi.org/10.4028/www.scientific.net/MSF.308- 311.509.
  15. Mahamood, R.M. and Akinlabi, E.T. (2017), Functionally Graded Materials, Springer.
  16. Markworth, A.J., Ramesh, K.S. and Parks, Jr. W.P. (1995), "Review: Modeling studies applied to functionally graded materialsˮ, J. Mater. Sci., 30(3), 2183-2193. https://doi.org/10.1007/BF01184560.
  17. Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R.G. (1999), Functionally Graded Materials: Design, Processing and Applications, Kluwer Academic Publishers, Dordrecht/London/Boston.
  18. Muskhelishvili, N. (1996), Some Basic Problems in the Mathematical Theory of Elasticity, Science.
  19. Nemat-Allal, M.M., Ata, M.H., Bayoumi, M.R. and Khair-Eldeen, W. (2011), "Powder metallurgical fabrication and microstructural investigations of Aluminum/Steel functionally graded materialˮ, Mater. Sci. Appl., 2(5), 1708-1718. https://doi.org/10.4236/msa.2011.212228.
  20. Rabenda, M. (2015), "Analysis of non-stationary heat transfer in a hollow cylinder with functionally graded material properties performed by different research methods", Eng. Transac., 63, 329-339.
  21. Rabenda, M. (2016), "The analysis of the impact of different shape functions in tolerance modeling on natural vibrations of the rectangular plate with dense system of the ribs in two directions", Vib. Phys. Syst., 27, 301-308.
  22. Rabenda, M. and Michalak, B. (2015), "Natural vibrations of prestressed thin functionally graded plates with dense system of ribs in two directionsˮ, Compos. Struct., 133, 1016-1023. https://doi.org/10.1016/j.compstruct.2015.08.026.
  23. Rizov, V. and Altenbach, H. (2022), "Multi-layered non-linear viscoelastic beams subjected to torsion at a constant speed: A delamination analysisˮ, Eng. Trans., 70, 53-66. https://doi.org/10.24423/EngTrans.1720.20220303.
  24. Rizov, V.I. (2018), "Non-linear fracture in bi-directional graded shafts in torsion", Multidisc. Model. Mater. Struct., 14, 387-399. https://doi.org/10.1108/MMMS-12-2017-0163.
  25. Rizov, V.I. (2020), "Longitudinal fracture analysis of inhomogeneous beams with continuously changing radius of cross-section along the beam lengthˮ, Strength Fract. Complex., 13, 31-43. https://doi.org/10.3233/SFC-200250.
  26. Rizov, V.I. (2020a), "Longitudinal fracture analysis of continuously inhomogeneous beam in torsion with stress relaxationˮ, Struct. Integr. Procedia, 28, 1212-122. https://doi.org/10.1016/j.prostr.2020.11.103.
  27. Rizov, V.I. (2021), "Delamination analysis of multilayered beams exhibiting creep under torsionˮ, Couple. Syst. Mech., 10, 317-331. https://doi.org/10.12989/csm.2021.10.4.317.
  28. Rizov, V.I. (2022), "Inhomogeneous beam structures of rectangular cross-section loaded in torsion: A delamination study with considering creep", Procedia Struct. Integr., 41, 94-102. https://doi.org/10.1016/j.prostr.2022.05.012.
  29. Saiyathibrahim, A., Subramaniyan, R. and Dhanapl, P. (2016), "Centrefugally cast functionally graded materials-Review", International Conference on Systems, Science, Control, Communications, Engineering and Technology, 68-73.
  30. Shrikantha Rao, S. and Gangadharan, K.V. (2014), "Functionally graded composite materials: An overviewˮ, Procedia Mater. Sci., 5(1), 1291-1299. https://doi.org/10.1016/j.mspro.2014.07.442.
  31. Sofiyev, A.H. and Avcar, M. (2010), "The stability of cylindrical shells containing an FGM layer subjected to axial load on the Pasternak foundationˮ, Eng., 2, 228-236. https://doi.org/10.4236/eng.2010.24033.
  32. Sofiyev, A.H., Alizada, A.N., Akin, O . Valiyev, A., Avcar, M. and Adiguzel, S. (2012), "On the stability of FGM shells subjected to combined loads with different edge conditions and resting on elastic foundationsˮ, Acta Mechanica, 223, 189-204. https://doi.org/10.1007/s00707-011-0548-1.
  33. Sola, A., Bellucci, D. and Cannillo, V. (2016), "Functionally graded materials for orthopedic applications-an update on design and manufacturingˮ, Biotechnol. Adv., 34, 504-531. https://doi.org/10.1016/j.biotechadv.2015.12.013.
  34. Toudehdehghan, A., Lim, J.W., Foo, K.E., Ma'Arof, M.I.N. and Mathews, J. (2017), "A brief review of functionally graded materials", MATEC Web Conf., 131, 03010. https://doi.org/10.1051/matecconf/201713103010UTP-UMP.
  35. Uslu Uysal, M. (2016), "Buckling behaviours of functionally graded polymeric thin-walled hemispherical shellsˮ, Steel Compos. Struct., 21(1), 849-862. https://doi.org/10.12989/scs.2016.21.4.849.
  36. Wu, X.L., Jiang, P., Chen, L., Zhang, J.F., Yuan, F.P. and Zhu, Y.T. (2014), "Synergetic strengthening by gradient structureˮ, Mater. Res. Lett., 2(1), 185-191. https://doi.org/10.1080/21663831.2014.935821.