DOI QR코드

DOI QR Code

Intra-ply, inter-ply and FG hybrid composites based on basalt and poly-ester fibers: Flexural and impact properties

  • Ehsan Fadayee Fard (Department of Materials Science, Faculty of Engineering, Shahrekord University) ;
  • Hassan Sharifi (Department of Materials Science, Faculty of Engineering, Shahrekord University) ;
  • Majid Tehrani (Department of Art, Shahrekord University) ;
  • Ehsan Akbari (Department of Materials Science, Faculty of Engineering, Shahrekord University)
  • Received : 2021.12.09
  • Accepted : 2022.07.21
  • Published : 2023.03.25

Abstract

Basalt and poly-ester fibers along with epoxy resin were used to produce inter-ply, intra-ply and functionally gradient hybrid composites. In all of the composites, the relative content of basalt fiber to poly-ester fiber was equal to 50 percent. The flexural and charpy impact properties of the hybrid composites are presented with particular regard to the effects of the hybrid types, stacking sequence of the plies, loading direction and loading speed. The results show that with properly choosing the composition and the stacking sequence of the plies; the inter-ply hybrid composites can achieve better flexural strength and impact absorption energy compared to the intra-ply and functionally gradient composites. The flexural strength and impact absorption energy of the functionally gradient hybrid composites is comparable to, or higher than the intra-ply sample. Also, by increasing the loading speed, the flexural strength increases while the flexural modulus does not have any special trend.

Keywords

References

  1. Akhbari, M., Shokrieh, M.M. and Nosraty, H. (2008), "A study on buckling behavior of composite sheet reinforced by hybrid woven fabrics", Trans. Can. Soc. Mech. Eng., 32, 81-89. https://doi.org/10.1139/tcsme-2008-0006.
  2. Artemenko, S.E. (2003), "Polymer composites materials made from carbon, basalt and glass fibers, structures and properties", Fibre Chem., 35, 226-229. https://doi.org/10.1139/tcsme-2008-0006.
  3. ArySubagia, I.D.G. and Kim, Y.A. (2013), "A study on flexural properties of carbon-basalt/epoxy hybrid composites", J. Mech. Sci. Tech., 27, 987-992. https://doi.org/10.1007/s12206-013-0209-5.
  4. ASTM D256-10 (2018), Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics.
  5. ASTM D790-03 (2003), Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials.
  6. Azizi, H. and Eslami-Farsani, R. (2021), "Study of mechanical properties of basalt fibers/epoxy composites containing silane-modified nanozirconia", J. Indus. Text., 51(4), 643-649. https://doi.org/10.1177/1528083719887530.
  7. Bafekrpour, E., Yang, C., Natali, M. and Fox, B. (2013), "Functionally graded carbon nanofiber/phenolic nano composites and their mechanical properties", Compos. Part A: Appl. Sci. Manuf., 54, 124-134. https://doi.org/10.1016/j.compositesa.2013.07.009.
  8. Bharti, I., Gupta, N. and Gupta, K.M. (2013), "Novel applications of functionally graded nano, optoelectronic and thermoelectric materials", Int. J. Mater., Mech. Manuf., 3, 221-224. https://doi.org/10.7763/IJMMM.2013.V1.47.
  9. Caminero, M.A., Garcia-Moreno, I. and Rodiguez, G.P. (2018), "Experimental study of the influence of thickness and ply-stacking sequence on the compression after impact strength of carbon fibre reinforced epoxy laminates", Polym. Test., 66, 360-370. https://doi.org/10.1016/j.polymertesting.2018.02.009.
  10. Dong, C. and Davies, I.J. (2012), "Optimal design for the flexural behaviour of glass and carbon fibre reinforced polymer hybrid composites", Mater. Des., 37, 450-457. https://doi.org/10.1016/j.matdes.2012.01.021.
  11. Hancox, N.L. (1981), Fibre Composite Hybrid Materials, Applied Science Publishers Ltd, London.
  12. Huang, Z.M., Wang, Q. and Ramakrishna, S. (2002), "Tensile behaviour of functionally graded braided carbon fibre/epoxy composite Material", Polym. Polym. Compos., 10, 307-314. https://doi.org/10.1177/096739110201000406.
  13. Jang, J. and Lee, C. (1998), "Performance improvement of GF/CF functionally gradient hybrid composites", Polym. Test., 17, 383-394. https://doi.org/10.1016/S0142-9418(97)00064-0.
  14. Kim, S.H., Heo, Y.J. and Park, S.J. (2019), "Ozonization of SWCNTs on thermal/mechanical properties of basalt fiber-reinforced composites", Steel Compos. Struct., 31, 517-527. https://doi.org/10.12989/scs.2019.31.5.517.
  15. Lee, N.J., Jang, J., Park, M. and Choe, C.R. (1997), "Characterization of functionally gradient epoxy/carbon fiber composite prepared under centrifugal force", J. Mater. Sci., 32, 2013-2020. https://doi.org/10.1023/A:1018502201000.
  16. Nosraty, H., Tehrani-Dehkordi, M., Shokrieh, M.M. and Minak, G. (2015), "Intraply hybrid composites based on basalt and nylon woven fabrics: tensile and compressive properties", Iran. J. Mater. Sci. Eng., 12, 1-11. https://doi.org/10.22068/ijmse.12.1.1.
  17. Okoli, I. (2001), "The effect of strain rate and failure modes on the failure energy of fiber reinforced composites", Compos. Struct., 54, 299-303. https://doi.org/10.1016/S0263-8223(01)00101-5.
  18. Onal, L. and Adanur, S. (2019), "Effect of stacking sequence on the mechanical properties of glass-carbon hybrid composites before and after impact", J. Indus. Text., 31, 255-271. https://doi.org/10.1106/152808302028713.
  19. O zbek, O., Bozkurt, O.Y. and Erklig, A. (2019), "An experimental study on intraply fiber hybridization of filament wound composite pipes subjected to quasi-static compression loading", Polym. Test., 79, 1-9. https://doi.org/10.1016/j.polymertesting.2019.106082.
  20. Park, R. and Jang, J. (1998), "The effect of hybridization on the mechanical performance of aramid/polyethylene intraply fabric composites", Compos. Sci. Tech., 58, 1621-1628. https://doi.org/10.1016/S0266-3538(97)00228-5.
  21. Pegoretti, A., Fabbri, E., Migliaresi, C. and Pilati, F. (2004), "Intraply and interplay hybrid composites based on E-glass and poly (vinyl alcohol) woven fabrics: tensile and impact properties", Polym. Inter., 53, 1290- 1297. https://doi.org/10.1002/pi.1514.
  22. Rajak, D., Pagar, D.D., Menezes, E.L. and Linul, E. (2019), "Fiber-reinforced polymer composites: manufacturing, properties, and applications", Polym., 11, 1667. https://doi.org/10.3390/polym11101667.
  23. Shokrieh, M.M. and Omidi, M.J. (2009), "Compressive response of glass-fiber reinforced polymeric composites to increasing compressive strain rates", Compos. Struct., 89, 517-523. https://doi.org/10.1016/j.compstruct.2008.11.006. 
  24. Sun, X. and Hallett, S. (2017), "Barely visible impact damage in scaled composite laminates: Experiments and numerical simulations", Int. J. Impact Eng., 109, 178-195. https://doi.org/10.1016/j.ijimpeng.2017.06.008.
  25. Tehrani-Dehkordi, M., Nosraty, H. and Rajabzadeh, M.H. (2015), "Effects of plies stacking sequence and fiber volume ratio on flexural properties of basalt/nylon-epoxy hybrid composites", Fiber. Polym., 16, 918-925. https://doi.org/10.1007/s12221-015-0918-8.
  26. Tehrani-Dehkordi, M., Nosraty, H., Shokrieh, M.M., Minak, G. and Ghelli, D. (2010), "Low velocity impact properties of intraply hybrid composites based on basalt and nylon woven fabrics", Mater. Des., 31, 3835-3844. https://doi.org/10.1016/j.matdes.2010.03.033.
  27. Thomas, B. and Roy, T. (2016), "Vibration analysis of functionally graded carbon nanotube-reinforced composite shell structures", Acta Mechanica, 227, 581-599. https://doi.org/10.1007/s00707-015-1479-z.
  28. Wang, X., Hu, B., Feng, Y., Liang, F., Mo, J., Xiong, J. and Qiu, Y. (2008), "Low velocity impact properties of 3D woven basalt/aramid hybrid composites", Compos. Sci. Tech., 68, 444-450. https://doi.org/10.1016/j.compscitech.2007.06.016.