References
- Akhbari, M., Shokrieh, M.M. and Nosraty, H. (2008), "A study on buckling behavior of composite sheet reinforced by hybrid woven fabrics", Trans. Can. Soc. Mech. Eng., 32, 81-89. https://doi.org/10.1139/tcsme-2008-0006.
- Artemenko, S.E. (2003), "Polymer composites materials made from carbon, basalt and glass fibers, structures and properties", Fibre Chem., 35, 226-229. https://doi.org/10.1139/tcsme-2008-0006.
- ArySubagia, I.D.G. and Kim, Y.A. (2013), "A study on flexural properties of carbon-basalt/epoxy hybrid composites", J. Mech. Sci. Tech., 27, 987-992. https://doi.org/10.1007/s12206-013-0209-5.
- ASTM D256-10 (2018), Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics.
- ASTM D790-03 (2003), Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials.
- Azizi, H. and Eslami-Farsani, R. (2021), "Study of mechanical properties of basalt fibers/epoxy composites containing silane-modified nanozirconia", J. Indus. Text., 51(4), 643-649. https://doi.org/10.1177/1528083719887530.
- Bafekrpour, E., Yang, C., Natali, M. and Fox, B. (2013), "Functionally graded carbon nanofiber/phenolic nano composites and their mechanical properties", Compos. Part A: Appl. Sci. Manuf., 54, 124-134. https://doi.org/10.1016/j.compositesa.2013.07.009.
- Bharti, I., Gupta, N. and Gupta, K.M. (2013), "Novel applications of functionally graded nano, optoelectronic and thermoelectric materials", Int. J. Mater., Mech. Manuf., 3, 221-224. https://doi.org/10.7763/IJMMM.2013.V1.47.
- Caminero, M.A., Garcia-Moreno, I. and Rodiguez, G.P. (2018), "Experimental study of the influence of thickness and ply-stacking sequence on the compression after impact strength of carbon fibre reinforced epoxy laminates", Polym. Test., 66, 360-370. https://doi.org/10.1016/j.polymertesting.2018.02.009.
- Dong, C. and Davies, I.J. (2012), "Optimal design for the flexural behaviour of glass and carbon fibre reinforced polymer hybrid composites", Mater. Des., 37, 450-457. https://doi.org/10.1016/j.matdes.2012.01.021.
- Hancox, N.L. (1981), Fibre Composite Hybrid Materials, Applied Science Publishers Ltd, London.
- Huang, Z.M., Wang, Q. and Ramakrishna, S. (2002), "Tensile behaviour of functionally graded braided carbon fibre/epoxy composite Material", Polym. Polym. Compos., 10, 307-314. https://doi.org/10.1177/096739110201000406.
- Jang, J. and Lee, C. (1998), "Performance improvement of GF/CF functionally gradient hybrid composites", Polym. Test., 17, 383-394. https://doi.org/10.1016/S0142-9418(97)00064-0.
- Kim, S.H., Heo, Y.J. and Park, S.J. (2019), "Ozonization of SWCNTs on thermal/mechanical properties of basalt fiber-reinforced composites", Steel Compos. Struct., 31, 517-527. https://doi.org/10.12989/scs.2019.31.5.517.
- Lee, N.J., Jang, J., Park, M. and Choe, C.R. (1997), "Characterization of functionally gradient epoxy/carbon fiber composite prepared under centrifugal force", J. Mater. Sci., 32, 2013-2020. https://doi.org/10.1023/A:1018502201000.
- Nosraty, H., Tehrani-Dehkordi, M., Shokrieh, M.M. and Minak, G. (2015), "Intraply hybrid composites based on basalt and nylon woven fabrics: tensile and compressive properties", Iran. J. Mater. Sci. Eng., 12, 1-11. https://doi.org/10.22068/ijmse.12.1.1.
- Okoli, I. (2001), "The effect of strain rate and failure modes on the failure energy of fiber reinforced composites", Compos. Struct., 54, 299-303. https://doi.org/10.1016/S0263-8223(01)00101-5.
- Onal, L. and Adanur, S. (2019), "Effect of stacking sequence on the mechanical properties of glass-carbon hybrid composites before and after impact", J. Indus. Text., 31, 255-271. https://doi.org/10.1106/152808302028713.
- O zbek, O., Bozkurt, O.Y. and Erklig, A. (2019), "An experimental study on intraply fiber hybridization of filament wound composite pipes subjected to quasi-static compression loading", Polym. Test., 79, 1-9. https://doi.org/10.1016/j.polymertesting.2019.106082.
- Park, R. and Jang, J. (1998), "The effect of hybridization on the mechanical performance of aramid/polyethylene intraply fabric composites", Compos. Sci. Tech., 58, 1621-1628. https://doi.org/10.1016/S0266-3538(97)00228-5.
- Pegoretti, A., Fabbri, E., Migliaresi, C. and Pilati, F. (2004), "Intraply and interplay hybrid composites based on E-glass and poly (vinyl alcohol) woven fabrics: tensile and impact properties", Polym. Inter., 53, 1290- 1297. https://doi.org/10.1002/pi.1514.
- Rajak, D., Pagar, D.D., Menezes, E.L. and Linul, E. (2019), "Fiber-reinforced polymer composites: manufacturing, properties, and applications", Polym., 11, 1667. https://doi.org/10.3390/polym11101667.
- Shokrieh, M.M. and Omidi, M.J. (2009), "Compressive response of glass-fiber reinforced polymeric composites to increasing compressive strain rates", Compos. Struct., 89, 517-523. https://doi.org/10.1016/j.compstruct.2008.11.006.
- Sun, X. and Hallett, S. (2017), "Barely visible impact damage in scaled composite laminates: Experiments and numerical simulations", Int. J. Impact Eng., 109, 178-195. https://doi.org/10.1016/j.ijimpeng.2017.06.008.
- Tehrani-Dehkordi, M., Nosraty, H. and Rajabzadeh, M.H. (2015), "Effects of plies stacking sequence and fiber volume ratio on flexural properties of basalt/nylon-epoxy hybrid composites", Fiber. Polym., 16, 918-925. https://doi.org/10.1007/s12221-015-0918-8.
- Tehrani-Dehkordi, M., Nosraty, H., Shokrieh, M.M., Minak, G. and Ghelli, D. (2010), "Low velocity impact properties of intraply hybrid composites based on basalt and nylon woven fabrics", Mater. Des., 31, 3835-3844. https://doi.org/10.1016/j.matdes.2010.03.033.
- Thomas, B. and Roy, T. (2016), "Vibration analysis of functionally graded carbon nanotube-reinforced composite shell structures", Acta Mechanica, 227, 581-599. https://doi.org/10.1007/s00707-015-1479-z.
- Wang, X., Hu, B., Feng, Y., Liang, F., Mo, J., Xiong, J. and Qiu, Y. (2008), "Low velocity impact properties of 3D woven basalt/aramid hybrid composites", Compos. Sci. Tech., 68, 444-450. https://doi.org/10.1016/j.compscitech.2007.06.016.