DOI QR코드

DOI QR Code

Free vibration analysis of power-law and sigmoidal sandwich FG plates using refined zigzag theory

  • Aman Garg (Department of Civil and Environmental Engineering, The NorthCap University) ;
  • Simmi Gupta (Department of Civil Engineering, National Institute of Technology Kurukshetra) ;
  • Hanuman D. Chalak (Department of Civil Engineering, National Institute of Technology Kurukshetra) ;
  • Mohamed-Ouejdi Belarbi (Laboratoire de Recherche en Genie Civil, LRGC. Universite de Biskra) ;
  • Abdelouahed Tounsi (YFL (Yonsei Frontier Lab), Yonsei University) ;
  • Li Li (State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology) ;
  • A.M. Zenkour (Department of Mathematics, Faculty of Science, King Abdulaziz University)
  • Received : 2022.04.15
  • Accepted : 2022.05.06
  • Published : 2023.03.25

Abstract

Free vibration analysis of power law and sigmoidal sandwich plates made up of functionally graded materials (FGMs) has been carried out using finite element based higher-order zigzag theory. The present model satisfies all-important conditions such as transverse shear stress-free conditions at the plate's top and bottom surface along with continuity condition for transverse stresses at the interface. A Nine-noded C0 finite element having eleven degrees of freedom per node is used during the study. The present model is free from the requirement of any penalty function or post-processing technique and hence is computationally efficient. The present model's effectiveness is demonstrated by comparing the present results with available results in the literature. Several new results have been proposed in the present work, which will serve as a benchmark for future works. It has been observed that the material variation law, power-law exponent, skew angle, and boundary condition of the plate widely determines the free vibration behavior of sandwich functionally graded (FG) plate.

Keywords

Acknowledgement

Simmi Gupta thanks MHRD, Government of India for financially supporting the present work through Ph. D. scholarship grant no. 2K18/NITK/PHD/6180093.

References

  1. Apetre, N.A., Sankar, B.V. and Ambur, D.R. (2008), "Analytical modeling of sandwich beams with functionally graded core", J. Sandw. Struct. Mater., 10, 53-74. https://doi.org/10.1177/1099636207081111.
  2. Bacciocchi, M., Eisenberger, M., Fantuzzi, N., Tornabene, F. and Viola, E. (2016), "Vibration analysis of variable thickness plates and shells by the generalized differential quadrature method", Compos. Struct., 156, 218-237. https://doi.org/10.1016/j.compstruct.2015.12.004.
  3. Belalia, S.A. (2019), "A new analysis of nonlinear free vibration behavior of bi-functionally graded sandwich plates using the p-version of the finite element method", Mech. Adv. Mater. Struct., 26, 727-740. https://doi.org/10.1080/15376494.2017.1410912.
  4. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23, 423-431. https://doi.org/10.1080/15376494.2014.984088.
  5. Birman, V. and Bert, C.W. (2002), "On the choice of shear correction factor in sandwich structures", J. Sandw. Struct. Mater., 4, 83-95. https://doi.org/10.1177/1099636202004001180.
  6. Bouafia, K., Selim, M.M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A., Bedia E.A.A. and Tounsi, A. (2021), "Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model", Steel Compos. Struct., 41(4), 487-503. https://doi.org/10.12989/scs.2021.41.4.487.
  7. Brischetto, S. (2009), "Classical and mixed advanced models for sandwich plates embedding functionally graded cores", J. Mech. Mater. Struct., 4, 13-33. https://doi.org/10.2140/jomms.2009.4.13.
  8. Burlayenko, V.N. and Sadowski, T. (2020), "Free vibrations and static analysis of functionally graded sandwich plates with three-dimensional finite elements", Meccanica, 55, 815-832. https://doi.org/10.1007/s11012-019-01001-7.
  9. Carrera, E. (2003), "Historical review of Zig-Zag theories for multilayered plates and shells", Appl. Mech. Rev., 56, 287-308. https://doi.org/10.1115/1.1557614.
  10. Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. Part B Eng., 42, 123-133. https://doi.org/10.1016/j.compositesb.2010.10.005.
  11. Chalak, H.D., Chakrabarti, A., Iqbal, M.A. and Sheikh, A.H. (2012), "An improved C0 FE model for the analysis of laminated sandwich plate with softcore", Finite Elem. Anal. Des., 56, 20-31. https://doi.org/10.1016/j.finel.2012.02.005.
  12. Chalak, H.D., Chakrabarti, A., Iqbal, M.A. and Sheikh, A.H. (2014), "C0 FE model based on HOZT for the analysis of laminated soft core skew sandwich plates: Bending and vibration", Appl. Math. Model., 38, 1211-1223. http://doi.org/10.1016/j.apm.2013.08.005.
  13. Chanda, A. and Sahoo, R. (2021), "Static and dynamic responses of simply supported sandwich plates using non-polynomial zigzag theory", Struct., 29, 1911-1933. https://doi.org/10.1016/j.istruc.2020.11.062.
  14. Chen, C.D. and Su, P.W. (2021), "An analytical solution for vibration in a functionally graded sandwich beam by using the refined zigzag theory", Acta Mech., 232, 4645-4668. http://doi.org/10.1007/s00707-021-03063-9.
  15. Daouadji, T.H., Adim, B. and Benferhat, R. (2016), "Bending analysis of an imperfect FGM plates under hygro-thermo-mechanical loading with analytical validation", Adv. Mat. Res., 5(1), 35-53. https://doi.org/10.12989/amr.2016.5.1.035.
  16. Di Sciuva, M. and Sorrenti, M. (2019), "Bending and free vibration analysis of functionally graded sandwich plates: An assessment of the Refined Zigzag Theory", J. Sandw. Struct. Mater., 23(3), 760-802. https://doi.org/10.1177/1099636219843970.
  17. Dorduncu, M. (2020), "Stress analysis of sandwich plates with functionally graded cores using peridynamic differential operator and refined zigzag theory", Thin Wall. Struct., 146, 106468. https://doi.org/10.1016/j.tws.2019.106468.
  18. Ferreira, A.J.M., Viola, E., Tornabene, F., Fantuzzi, N. and Zenkour, A.M. (2013), "Analysis of sandwich plates by generalized differential quadrature method", Math. Probl. Eng., 2013, Article ID 964367. https://doi.org/10.1155/2013/964367.
  19. Fu, T., Chen, Z., Yu, H., Wang, Z. and Liu, X. (2020), "Free vibration of functionally graded sandwich plates based on nth-order shear deformation theory via differential quadrature method", J. Sandw. Struct. Mater., 22(5), 1660-1680. https://doi.org/10.1177/1099636218809451.
  20. Garg, A. and Chalak, H.D. (2019), "A review on analysis of laminated composite and sandwich structures under hygrothermal conditions", Thin Wall. Struct., 142, 205-226. https://doi.org/10.1016/j.tws.2019.05.005.
  21. Garg, A. and Chalak, H.D. (2021a), "Analysis of non-skew and skew laminated composite and sandwich plates under hygro-thermo-mechanical conditions including transverse stress variations", J. Sandw. Struct. Mater., 23(8), 3471-3494. https://doi.org/10.1177/1099636220932782.
  22. Garg, A. and Chalak, H.D. (2021b), "Novel higher-order zigzag theory for analysis of laminated sandwich beams", Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 235(1), 176-194. https://doi.org/10.1177/1464420720957045.
  23. Garg, A., Belarbi, M.O., Chalak, H.D. and Chakrabarti, A. (2021a), "A review of the analysis of sandwich FGM structures", Compos. Struct., 258, 113427. https://doi.org/10.1016/j.compstruct.2020.113427.
  24. Garg, A., Chalak, H.D. and Chakrabarti, A. (2020a), "Bending analysis of functionally graded sandwich plates using HOZT including transverse displacement effects", Mech. Bas. Des. Struct. Mach., 50(10), 3563-3577. https://doi.org/10.1080/15397734.2020.1814157.
  25. Garg, A., Chalak, H.D. and Chakrabarti, A. (2020b), "Comparative study on the bending of sandwich FGM beams made up of different material variation laws using refined layerwise theory", Mech. Mater., 151, 103634. https://doi.org/10.1016/j.mechmat.2020.103634.
  26. Garg, A., Chalak, H.D., Belarbi, M.O. and Zenkour, A.M. (2021b), "Hygro-thermo-mechanical based bending analysis of symmetric and unsymmetric power-law, exponential and sigmoidal FG sandwich beams", Mech. Adv. Mater. Struct., 29(25), 4523-4545. https://doi.org/10.1080/15376494.2021.1931993.
  27. Garg, A., Chalak, H.D., Belarbi, M.O., Chakrabarti, A. and Houari, M.S.A. (2021c), "Finite element-based free vibration analysis of power-law, exponential and sigmoidal functionally graded sandwich beams", J. Inst. Eng. India Ser. C, 102(5), 1167-1201. https://doi.org/10.1007/s40032-021-00740-5.
  28. Ghatage, P.S., Kar, V.R. and Sudhagar, P.E. (2020), "On the numerical modelling and analysis of multidirectional functionally graded composite structures: A review", Compos. Struct., 236, 111837. https://doi.org/10.1016/j.compstruct.2019.111837.
  29. Hadji, L. and Bernard, F. (2020), "Bending and free vibration analysis of functionally graded beams on elastic foundations with analytical validation", Adv. Mater. Res., 9(1), 63-98. https://doi.org/10.12989/amr.2020.9.1.063.
  30. Hadji, L., Amoozgar, M. and Tounsi, A. (2022), "Non-linear thermal buckling of FG plates with porosity", Steel Compos. Struct., 42(5), 711-722. https://doi.org/10.12989/scs.2022.42.5.711.
  31. Hadji, L., Atmane, H.A., Tounsi, A., Mechab, I. and Bedia, E.A.A. (2011), "Free vibration of functionally graded sandwich plates using four-variable refined plate theory", Appl. Math. Mech., 32, 925-942. https://doi.org/10.1007/s10483-011-1470-9.
  32. Hadji, L., Bernard, F., Safa, A. and Tounsi, A. (2021), "Bending and free vibration analysis for FGM plates containing various distribution shape of porosity", Adv. Mater. Res., 10(2), 115-135. https://doi.org/10.12989/amr.2021.10.2.115.
  33. Iurlaro, L., Gherlone, M. and Di Sciuva, M. (2014), "Bending and free vibration analysis of functionally graded sandwich plates using the Refined Zigzag Theory", J. Sandw. Struct. Mater., 16(6), 669-699. https://doi.org/10.1177/1099636214548618.
  34. Keddouri, A., Hadji, L. and Tounsi, A. (2019), "Static analysis of functionally graded sandwich plates with porosities", Adv. Mater. Res., 8(3), 155-177. https://doi.org/10.12989/amr.2019.8.3.155.
  35. Kurpa, L.V. and Shmatko, T.V. (2021), "Buckling and free vibration analysis of functionally graded sandwich plates and shallow shells by the Ritz method and the R-functions theory", Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 235(20), 4582-4593. https://doi.org/10.1177/0954406220936304.
  36. Li, Q., Iu, V.P. and Kou, K.P. (2008), "Three-dimensional vibration analysis of functionally graded material sandwich plates", J. Sound Vib., 311, 498-515. https://doi.org/10.1016/j.jsv.2007.09.018.
  37. Liu, M., Cheng, Y. and Liu, J. (2015), "High-order free vibration analysis of sandwich plates with both functionally graded face sheets and functionally graded flexible core", Compos. Part B Eng., 72, 97-107. https://doi.org/10.1016/j.compositesb.2014.11.037.
  38. Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045.
  39. Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Bedia, E.A.A. and Mahmoud, S.R. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 21, 727-757. https://doi.org/10.1177/1099636217698443.
  40. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2012), "Static analysis of functionally graded sandwich plates according to a hyperbolic theory considering Zig-Zag and warping effects", Adv. Eng. Softw., 52, 30-43. https://doi.org/10.1016/j.advengsoft.2012.05.005.
  41. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Jorge, R.M.N., Soares, C.M.M. and Araujo, A.L. (2017), "Influence of zig-zag and warping effects on buckling of functionally graded sandwich plates according to sinusoidal shear deformation theories", Mech. Adv. Mater. Struct., 24, 360-376. https://doi.org/10.1080/15376494.2016.1191095.
  42. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2013), "Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique", Compos. Part B Eng., 44, 657-674. https://doi.org/10.1016/j.compositesb.2012.01.089.
  43. Pai, P.F. (1995), "A new look at shear correction factors and warping functions of anisotropic laminates", Int. J. Solid. Struct., 32, 2295-2313. https://doi.org/10.1016/0020-7683(94)00258-X.
  44. Pandey, S. and Pradyumna, S. (2015), "Free vibration of functionally graded sandwich plates in thermal environment using a layerwise theory", Eur. J. Mech. A/Solid., 51, 55-66. https://doi.org/10.1016/j.euromechsol.2014.12.001.
  45. Patni, M., Minera, S., Groh, R.M.J., Pirrera, A. and Weaver, P.M. (2018), "Three-dimensional stress analysis for laminated composite and sandwich structures", Compos. Part B Eng., 155, 299-328. https://doi.org/10.1016/j.compositesb.2018.08.127.
  46. Saad, M., Hadji, L. and Tounsi, A. (2021), "Effect of porosity on the free vibration analysis of various functionally graded sandwich plates", Adv. Mater. Res., 10(4), 293-311. https://doi.org/10.12989/amr.2021.10.4.293.
  47. Sayyad, A.S. and Ghugal, Y.M. (2019), "Modeling and analysis of functionally graded sandwich beams: a review", Mech. Adv. Mater. Struct., 26, 1776-1795. https://doi.org/10.1080/15376494.2018.1447178.
  48. Singh, S.J. and Harsha, S.P. (2020), "Nonlinear Vibration analysis of sigmoid functionally graded sandwich plate with ceramic-FGM-metal layers", J. Vib. Eng. Technol., 8, 67-84. https://doi.org/10.1007/s42417-018-0058-8.
  49. Tahir, S.I., Tounsi, A., Chikh, A., Al-Osta1 M.A., Al-Dulaijan S.U. and Al-Zahrani, M.M. (2022), "The effect of three-variable viscoelastic foundation on the wave propagation in functionally graded sandwich plates via a simple quasi-3D HSDT", Steel Compos. Struct., 42(2), 501-511. https://doi.org/10.12989/scs.2022.42.4.501.
  50. Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech. A/Solid., 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008.
  51. Tornabene, F. (2009, "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Meth. Appl. Mech. Eng., 198, 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011.
  52. Tornabene, F., Fantuzzi, N., Ubertini, F. and Viola, E. (2015), "Strong formulation finite element method based on differential quadrature: A survey", Appl. Mech. Rev., 67, 1-55. https://doi.org/10.1115/1.4028859.
  53. Ye, R., Zhao, N., Yang, D., Cui, J., Gaidai, O. and Ren, P. (2021), "Bending and free vibration analysis of sandwich plates with functionally graded soft core, using the new refined higher-order analysis model", J. Sandw. Struct. Mater., 23(2), 680-710. https://doi.org/10.1177/1099636220909763.
  54. Zenkour, A., Mashat, D. and Elsibai, K. (2009), "Bending analysis of functionally graded plates in the context of different theories of thermoelasticity", Math. Prob. Eng., 2009, Article ID 962351. https://doi.org/10.1155/2009/962351.
  55. Zenkour, A.M. (2005a), "A comprehensive analysis of functionally graded sandwich plates: Part 1-Deflection and stresses", Int. J. Solid. Struct., 42, 5224-5242. https://doi.org/10.1016/j.ijsolstr.2005.02.015.
  56. Zenkour, A.M. (2005b), "A comprehensive analysis of functionally graded sandwich plates: Part 2-Buckling and free vibration", Int. J. Solid. Struct., 42, 5243-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016.
  57. Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30, 67-84. https://doi.org/https://doi.org/10.1016/j.apm.2005.03.009.
  58. Zenkour, A.M. (2009), "The effect of transverse shear and normal deformations on the thermomechanical bending of functionally graded sandwich plates", Int. J. Appl. Mech., 1, 667-707. https://doi.org/10.1142/S1758825109000368.
  59. Zhang, N., Khan, T., Guo, H., Shi, S., Zhong, W. and Zhang, W. (2019), "Functionally graded materials: an overview of stability, buckling, and free vibration analysis", Adv. Mater. Sci. Eng., 2019, Article ID 1354150. https://doi.org/10.1155/2019/1354150.
  60. Zouatnia, N. and Hadji, L. (2019), "Static and free vibration behavior of functionally graded sandwich plates using a simple higher order shear deformation theory", Adv. Mater. Res., 8(4), 313-335. https://doi.org/10.12989/amr.2019.8.4.313.