DOI QR코드

DOI QR Code

The effects of thermal relaxation times in living tissues under the TPL bio-heat model with experimental study

  • Ibrahim A. Abbas (Department of Mathematics, Faculty of Science, Sohag University) ;
  • Aboelnour Abdalla (Department of Mathematics, Faculty of Science, Sohag University) ;
  • Fathi Anwar (Department of Mathematics, Faculty of Science, Sohag University) ;
  • Hussien Sapoor (Department of Mathematics, Faculty of Science, Sohag University)
  • 투고 : 2022.03.19
  • 심사 : 2022.06.14
  • 발행 : 2023.03.25

초록

In the present article, the effects of three thermal relaxation times in living tissue under the three-phaselag (TPL) bioheat model are introduced. Using the Laplace transforms, the analyticalsolution of the temperature and the resulting thermal damagesin living tissues are obtained. The experimental data are used to validate the analytical solutions. By the formulations of Arrhenius, the thermal damage of tissue is estimated. Numerical outcomes for the temperature and the resulting of thermal damages are presented graphically. The effects of parameters, such as thermalrelaxation times, blood perfusion rate on tissue temperature are also discussed in detail.

키워드

참고문헌

  1. Abbas, I.A., Abdalla, A. and Sapoor, H. (2022), "Nonlocal heat conduction approach in biological tissue generated by laser irradiation", Adv. Mater. Res., 11(2), 111-120. https://doi.org/10.12989/amr.2022.11.2.111. 
  2. Abbas, I.A. and Alzahrani, F.S. (2016), "Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse", Steel Compos. Struct., 21(4), 791-803. https://doi.org/10.12989/scs.2016.21.4.791. 
  3. Abbas, I.A. and Kumar, R. (2016), "2D deformation in initially stressed thermoelastic half-space with voids", Steel Compos. Struct., 20(5), 1103-1117. https://doi.org/10.12989/scs.2016.20.5.1103. 
  4. Abbas, I.A. and Marin, M. (2017), "Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating", Physica E: Low Dimens. Syst. Nanostruct., 87, 254-260. https://doi.org/10.1016/j.physe.2016.10.048. 
  5. Abdalla, A., Abbas, I. and Sapoor, H. (2022), "The effects of fractional derivatives of bio-heat model in living tissues using analytical-numerical method", Inform. Sci. Lett., 11(1), 7-13. https://doi.org/10.18576/isl/110102. 
  6. Abo-Dahab, S.M. and Abbas, I.A. (2011), "LS model on thermal shock problem of generalized magnetothermoelasticity for an infinitely long annular cylinder with variable thermal conductivity", Appl. Math. Model., 35(8), 3759-3768. https://doi.org/10.1016/j.apm.2011.02.028. 
  7. Ahmadikia, H., Fazlali, R. and Moradi, A. (2012), "Analytical solution of the parabolic and hyperbolic heat transfer equations with constant and transient heat flux conditions on skin tissue", Int. Commun. Heat Mass Transf., 39(1), 121-130. https://doi.org/10.1016/j.icheatmasstransfer.2011.09.016. 
  8. Akbarzadeh, A., Fu, J. and Chen, Z. (2014), "Three-phase-lag Heat conduction in a functionally graded hollow cylinder", Trans. Can. Soc. Mech. Eng., 38(1), 155-171. https://doi.org/10.1139/tcsme-2014-0010. 
  9. Alzahrani, F. and Abbas, I.A. (2021), "A study on thermo-elastic interactions in 2D porous media withwithout energy dissipation", Steel Compos. Struct., 38(5), 523-531. https://doi.org/10.12989/scs.2021.38.5.523. 
  10. Alzahrani, F.S. and Abbas, I.A. (2016), "The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory", Steel Compos. Struct., 22(2), 369-386. https://doi.org/10.12989/scs.2016.22.2.369. 
  11. Antaki, P.J. (2005), "New interpretation of non-Fourier heat conduction in processed meat", J. Heat Transf., 127(2), 189-193. https://doi.org/10.1115/1.1844540. 
  12. Askarizadeh, H. and Ahmadikia, H. (2014), "Analytical analysis of the dual-phase-lag model of bioheat transfer equation during transient heating of skin tissue", Heat Mass Transf./Waerme Stoffuebertragung, 50(12), 1673-1684. https://doi.org/10.1007/s00231-014-1373-6. 
  13. Cattaneo, C. (1958), "A form of heat-conduction equations which eliminates the paradox of instantaneous propagation", Comptes Rendus, 247 431. 
  14. Das, K., Singh, R. and Mishra, S.C. (2013), "Numerical analysis for determination of the presence of a tumor and estimation of its size and location in a tissue", J. Therm. Biology, 38(1), 32-40. https://doi.org/10.1016/j.jtherbio.2012.10.003. 
  15. Di Michele, F., Pizzichelli, G., Mazzolai, B. and Sinibaldi, E. (2015), "On the preliminary design of hyperthermia treatments based on infusion and heating of magnetic nanofluids", Math. Biosci., 262, 105-116. https://doi.org/10.1016/j.mbs.2014.12.006. 
  16. Dombrovsky, L.A., Timchenko, V. and Jackson, M. (2012), "Indirect heating strategy for laser induced hyperthermia: An advanced thermal model", Int. J. Heat Mass Transf., 55(17-18), 4688-4700. https://doi.org/10.1016/j.ijheatmasstransfer.2012.04.029. 
  17. Eftekhari, S.A. (2018), "A coupled Ritz-finite element method for free vibration of rectangular thin and thick plates with general boundary conditions", Steel Compos. Struct., 28(6), 655-670. https://doi.org/10.12989/scs.2018.28.6.655. 
  18. Fahmy, M.A. (2019), "Boundary element modeling and simulation of biothermomechanical behavior in anisotropic laser-induced tissue hyperthermia", Eng. Anal. Bound. Elem., 101, 156-164. https://doi.org/10.1016/j.enganabound.2019.01.006. 
  19. Gardner, C.M., Jacques, S.L. and Welch, A.J. (1996), "Light transport in tissue: Accurate expressions for one-dimensional fluence rate and escape function based upon Monte Carlo simulation", Laser. Surgery Medic., 18(2), 129-138. https://doi.org/10.1002/(SICI)1096-9101(1996)18:2. 
  20. Gupta, P.K., Singh, J. and Rai, K.N. (2010), "Numerical simulation for heat transfer in tissues during thermal therapy", J. Therm. Biol., 35(6), 295-301. https://doi.org/10.1016/j.jtherbio.2010.06.007. 
  21. Habash, R.W.Y., Bansal, R., Krewski, D. and Alhafid, H.T. (2006), "Thermal therapy, Part 1: An introduction to thermal therapy", Crit. Rev. Biomed. Eng., 34(6), 459-489. https://doi.org/10.1615/CritRevBiomedEng.v34.i6.20. 
  22. Hassan, M., Marin, M., Ellahi, R. and Alamri, S.Z. (2018), "Exploration of convective heat transfer and flow characteristics synthesis by Cu-Ag/Water hybrid-nanofluids", Heat Transf. Res., 49(18), 1837-1848. https://doi.org/10.1615/HeatTransRes.2018025569. 
  23. Henriques, Jr. F. and Moritz, A. (1947), "Studies of thermal injury: I. The conduction of heat to and through skin and the temperatures attained therein. A theoretical and an experimental investigation", Am. J. Pathol., 23(4), 530. 
  24. Hobiny, A. and Abbas, I. (2021), "Analytical solutions of fractional bioheat model in a spherical tissue", Mech. Based Des. Struct. Mach., 49(3), 430-439. https://doi.org/10.1080/15397734.2019.1702055. 
  25. Hobiny, A.D. and Abbas, I.A. (2018), "Theoretical analysis of thermal damages in skin tissue induced by intense moving heat source", Int. J. Heat Mass Transf., 124, 1011-1014. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.018. 
  26. Jou, D. (1998), "DY Tzou: Macro-to microscale heat transfer. The lagging behaviour. Series in chemical and mechanical engineering", J. Non Equilib. Thermodyn., 23(2), 192-193. 
  27. Kabiri, A. and Talaee, M.R. (2022), "Effects of non-Fourier bioheat transfer on bone drilling temperature in orthopedic surgery: Theoretical and in vitro experimental investigation", Proc. Inst. Mech. Eng., Part H: J. Eng. Medic., 236(6), 811-824. https://doi.org/10.1177/09544119221089122. 
  28. Kahya, V. and Turan, M. (2018), "Vibration and buckling of laminated beams by a multi-layer finite element model", Steel Compos. Struct., 28(4), 415-426. https://doi.org/10.12989/scs.2018.28.4.415. 
  29. Kaur, H. and Lata, P. (2020), "Effect of thermal conductivity on isotropic modified couple stress thermoelastic medium with two temperatures", Steel Compos. Struct., 34(2), 309-319. https://doi.org/10.12989/scs.2020.34.2.309. 
  30. Kumar, D. and Rai, K.N. (2016), "A study on thermal damage during hyperthermia treatment based on DPL model for multilayer tissues using finite element Legendre wavelet Galerkin approach", J. Therm. Biology, 62, 170-180. https://doi.org/10.1016/j.jtherbio.2016.06.020. 
  31. Kumar, D. and Rai, K.N. (2020), "Three-phase-lag bioheat transfer model and its validation with experimental data", Mech. Bas. Des. Struct. Mach., 50(7), 2493-2507. https://doi.org/10.1080/15397734.2020.1779741. 
  32. Kumar, P., Kumar, D. and Rai, K.N. (2016), "Numerical simulation of dual-phase-lag bioheat transfer model during thermal therapy", Math. Biosci., 281, 1339-1351. https://doi.org/10.1016/j.mbs.2016.08.013. 
  33. Kumar, R. and Chawla, V. (2011), "A study of plane wave propagation in anisotropic three-phase-lag and two-phase-lag model", Int. Commun. Heat Mass Transf., 38(9), 1262-1268. https://doi.org/10.1016/j.icheatmasstransfer.2011.07.005. 
  34. Kumar, R. and Chawla, V. (2013), "Reflection and refraction of plane wave at the interface between elastic and thermoelastic media with three-phase-lag model", Int. Commun. Heat Mass Transf., 48, 53-60. https://doi.org/10.1016/j.icheatmasstransfer.2013.08.013. 
  35. Kumari, T. and Singh, S.K. (2022), "A numerical study of space-fractional three-phase-lag bioheat transfer model during thermal therapy", Heat Transf., 51(1), 470-489. https://doi.org/10.1002/htj.22316. 
  36. Lata, P. (2018), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., 27(4), 439-451. https://doi.org/10.12989/scs.2018.27.4.439. 
  37. Lata, P. and Kaur, H. (2021), "Interactions in a homogeneous isotropic modified couple stress thermoelastic solid with multi-dual-phase-lag heat transfer and two temperature", Steel Compos. Struct., 38(2), 213-221. https://doi.org/10.12989/scs.2021.38.2.213. 
  38. Marin, M. (1996), "Generalized solutions in elasticity of micropolar bodies with voids", Revista de la Academia Canaria de Ciencias: Folia Canariensis Academiae Scientiarum, 8(1), 101-106. 
  39. Marin, M., Vlase, S. and Paun, M. (2015), "Considerations on double porosity structure for micropolar bodies", AIP Adv., 5(3), 037113. https://doi.org/10.1063/1.4914912. 
  40. Mitchell, J.W., Galvez, T.L., Hengle, J., Myers, G.E. and Siebecker, K.L. (1970), "Thermal response of human legs during cooling", J. Appl. Physiol., 29(6), 859-865. https://doi.org/10.1152/jappl.1970.29.6.859. 
  41. Moritz, A.R. and Henriques, F.C. (1947), "Studies of thermal injury: II. The relative importance of time and surface temperature in the causation of cutaneous burns", Am. J. Pathol., 23(5), 695-720. 
  42. Museux, N., Perez, L., Autrique, L. and Agay, D. (2012), "Skin burns after laser exposure: Histological analysis and predictive simulation", Burns, 38(5), 658-667. https://doi.org/10.1016/j.burns.2011.12.006. 
  43. Padra, C. and Salva, N.N. (2013), "Locating multiple tumors by moving shape analysis", Math. Biosci., 245(2), 103-110. https://doi.org/10.1016/j.mbs.2013.07.002. 
  44. Pennes, H.H. (1948), "Analysis of tissue and arterial blood temperatures in the resting human forearm", J. Appl. Physiol., 1(2), 93-122. https://doi.org/10.1152/jappl.1948.1.2.93. 
  45. Quintanilla, R. and Racke, R. (2008), "A note on stability in three-phase-lag heat conduction", Int. J. Heat Mass Transf., 51(1-2), 24-29. https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.045. 
  46. Saeed, T. and Abbas, I. (2020), "Finite element analyses of nonlinear DPL bioheat model in spherical tissues using experimental data", Mech. Bas. Des. Struct. Mach., 50(4), 1287-1297. https://doi.org/10.1080/15397734.2020.1749068. 
  47. Saeed, T., Abbas, I. and Marin, M. (2020), "A GL model on thermo-elastic interaction in a poroelastic material using finite element method", Symmetry, 12(3), 488. https://doi.org/10.3390/SYM12030488. 
  48. Stolwijk, J. and Hardy, J. (1966), "Temperature regulation in man-a theoretical study", Pfluger's Archiv fur die Gesamte Physiologie des Menschen und der Tiere, 291(2), 129-162.  https://doi.org/10.1007/BF00412787
  49. Sur, A., Mondal, S. and Kanoria, M. (2020), "Influence of moving heat source on skin tissue in the context of two-temperature caputo-fabrizio heat transport law", J. Multisc. Mod., 11(2), 2050002., https://doi.org/10.1142/S175697372050002X. 
  50. Tzou, D.Y. (2014), Macro-to Microscale Heat Transfer: The Lagging Behavior, John Wiley & Sons 
  51. Vernotte, P. (1958), "Les paradoxes de la theorie continue de l'equation de la chaleur", Compt. Rendu, 246, 3154-3155. 
  52. Xu, F., Seffen, K.A. and Lu, T.J. (2008), "Non-Fourier analysis of skin biothermomechanics", Int. J. Heat Mass Transf., 51(9-10), 2237-2259. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.024.