
IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.2, February 2023

199

Manuscript received February 5, 2023
Manuscript revised February 20, 2023
https://doi.org/10.22937/IJCSNS.2023.23.2.22

Minimize Web Applications Vulnerabilities through the Early
Detection of CRLF Injection

Md. Mijanur Rahman, Md. Asibul Hasan
a Department of Computer Science and Engineering, Southeast University, Dhaka, 1208, Bangladesh

Corresponding author: mijanur.rahman@seu.edu.bd, asifhasan12355@gmail.com

Abstract
Carriage return (CR) and line feed (LF), also known as CRLF
injection is a type of vulnerability that allows a hacker to enter
special characters into a web application, altering its operation or
confusing the administrator. Log poisoning and HTTP response
splitting are two prominent harmful uses of this technique.
Additionally, CRLF injection can be used by an attacker to exploit
other vulnerabilities, such as cross-site scripting (XSS). Email
injection, also known as email header injection, is another way that
can be used to modify the behavior of emails. The Open Web
Application Security Project (OWASP) is an organization that
studies vulnerabilities and ranks them based on their level of risk.
According to OWASP, CRLF vulnerabilities are among the top 10
vulnerabilities and are a type of injection attack. Automated testing
can help to quickly identify CRLF vulnerabilities, and is
particularly useful for companies to test their applications before
releasing them. However, CRLF vulnerabilities can also lead to
the discovery of other high-risk vulnerabilities, and it fosters a
better approach to mitigate CRLF vulnerabilities in the early stage
and help secure applications against known vulnerabilities.
Although there has been a significant amount of research on other
types of injection attacks, such as Structure Query Language
Injection (SQL Injection). There has been less research on CRLF
vulnerabilities and how to detect them with automated testing.
There is room for further research to be done on this subject matter
in order to develop creative solutions to problems. It will also help
to reduce false positive alerts by checking the header response of
each request. Security automation is an important issue for
companies trying to protect themselves against security threats.
Automated alerts from security systems can provide a quicker and
more accurate understanding of potential vulnerabilities and can
help to reduce false positive alerts. Despite the extensive research
on various types of vulnerabilities in web applications, CRLF
vulnerabilities have only recently been included in the research.
Utilizing automated testing as a recurring task can assist
companies in receiving consistent updates about their systems and
enhance their security.

Keywords:
Cyber Security, OWASP vulnerabilities, Security Detection, CRLF
Injection, Injection Attack

1. Introduction

The Cyber security is primarily concerned with the
protection of anything that is connected to the internet. This
can be an application/software, network, device, etc. There
are numerous types of vulnerabilities in applications, such
as SQL injection, cross-site scripting (XSS), and local file
inclusion (LFI), while network vulnerabilities may include
denial of service (DoS) attacks, sniffing, and spoofing[3]
[4]. To ensure cyber security, engineers must prioritize
confidentiality, integrity, and availability, which are the
three letters upon which the CIA triad stands. The goal of
this research is to identify a specific application
vulnerability. The cyber security industry is massive and
consists primarily of two teams: one works for the company
while the other works against the company, typically the
intruder. It is crucial that everyone in the Software
Development Life Cycle (SDLC) maintains the process, but
due to a lack of understanding or high value, some
organizations skip security testing. However, security
testing checks whether the software is vulnerable to cyber
attacks, test the impact of malicious activities, and
determine the long-term success of the software.

The majority of researchers covered different types of
vulnerability which is also dangerous for web applications
as well as other software. But there is less research on CRLF
injection vulnerability and has been one of the most
dangerous vulnerabilities in recent years. Because this
vulnerability was discovered newly that is why there is no
details research about this vulnerability so there is a scope
to improve CRLF detection. Researchers have only
investigated the other types of vulnerabilities where attacks
are mainly based on HTTP attacks [1]. This research only
covers web application vulnerability which is a very big
issue in developing a secure application[5]. CRLF
vulnerability is not a common vulnerability like Cross site
scripting or SQL injection [5][6] but this can lead to other
vulnerabilities and expose the system to critical information.

If there is any vulnerability that discloses the company's
inside information or exposes users’/customers’

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.2, February 2023

200

information that will be a huge disaster for the company.
The most widespread flaw in web applications is the
injection, which includes SQL, HTML, CRLF, and other
types of injection. Other flaws include XSS, broken access
control, security misconfiguration, exposed sensitive data,
inadequate attack protection, using components with known
vulnerabilities, using unprotected APIs, local file inclusion,
and broken authentication and session management [1][7].
To solve this problem, many researchers have tried several
methods but less research has been carried out in the area of
CRLF vulnerability detection or discovery, and this still
remains one of the most critical vulnerabilities. This can
expose system information and hackers can steal
confidential data from applications. CRLF is not only a
single vulnerability but this can also lead to some other
vulnerabilities mainly injection type of vulnerabilities.

The majority of organization who is concerned about
their security hire a security specialist to prevent security
breaches, and a security engineer to check for
vulnerabilities manually but this process takes so much time
and reduce productivity. As cyber threats evolve, security
engineers are increasingly tasked with threat modeling,
penetration testing, and automation to proactively
determine the level of vulnerability. This is focused on a
critical injection of vulnerability CRLF. CRLF refers to
Carriage Return and Line Feed. It’s an injection attack that
could lead to XSS attack by doing that attacker can grab the
user session and in some cases can accelerate privilege [8]
[9]. XSS attacks are a type of injection, in which malicious
scripts are injected into otherwise benign and trusted
websites. XSS attacks occur when an attacker uses a web
application to send malicious code, generally in the form of
a browser side script, to a different end user through such
an online application. The code for a web browser often
takes the form of a JavaScript segment, but it can also be
HTML, Flash, or any other type of code that the browser is
capable of executing. [10] [11]. XSS vulnerabilities
normally allow an attacker to masquerade as a victim user,
to carry out any actions that the user is able to perform and
to access any of the user's data [6].

There are so many researches that have been done based on
web application vulnerability as well as network
vulnerability and threats. The majority of these are
dangerous attacks that can take over the full system. But
though CRLF vulnerability is a new kind of vulnerability
that has not been explored by researchers, most especially
the specific vulnerability. Some software works impeccably
with CRLF vulnerability but they are paid applications. To
solve this problem with CRLF vulnerability, this research
will provide insight and a logical approach for those who
want to work in this area of interest.

The first section of this study described its abstract. The
second section described the introduction of the study. The
third section conveyed the literature review, followed by the
methodology, and finally the conclusion of the research.

2. Literature Review

In According to our studies, there has been a fair
amount of research done on vulnerability management.
Some of the research has been focused on injection-based
attacks including SQL injection, HTML injection, and also
code injection. A study on three major SQLi techniques was
implemented on the educational and financial websites of
Bangladesh and executes analysis web applications for
figuring out the security condition [1]. But there was no
mention of any CRLF vulnerability. Some case studies have
been conducted on various types of vulnerabilities in some
websites in Bangladesh. Additionally, some papers have
explored automated and manual penetration testing in a
range of domains. An example of the online application
called Tunestore is used in a case study to carry out security
testing. It provides an example of tool- and manually-
assisted web application security testing. Testing on
Tunestore is done using Paros, WebScarab, JBroFuzz,
Fortify, and Acunetix. [5].

This paper aims to eliminate CRLF vulnerability on web
applications and helps the security tester to detect the
vulnerability before releasing the product. Solving this
vulnerability will also secure the application against XSS
attacks because CRLF can also lead to XSS. These are
major vulnerabilities according to OWASP.

3. Methodology

CRLF vulnerability in web applications is a major
security concern that can have serious consequences. This
vulnerability allows attackers to insert malicious code into
a web page or application, which can then be executed by
the web browser or program. This can result in the exposure
of sensitive information, the execution of arbitrary code, or
the launch of a denial of service attack.

CRLF vulnerabilities are often exploited through CRLF
injection attacks, in which malicious code is injected into a
web page or application. To prevent CRLF injection attacks,
it is essential to properly validate and sanitize all input. Any
user input that will be used in a Structured Query Language
(SQL) should be properly encoded and checked for
incorrect characters. It is also critical to keep all web servers
and applications up to date with the latest security fixes.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.2, February 2023

201

Figure 1: How CRLF attacks occurred

As a result of this CRLF attack, more harmful attacks

including XSS, page injection, web cache poisoning, and
many others are launched. Log poisoning and HTTP
response splitting are the popular use of these attacks. By
adding a line end and an extra line, the attacker adds false
log file entries. This could be done to deceive system
administrators or cover up other attacks [10]. LF, CR, #,
and ! are common ASCII characters used in creating server-
side attacks. By including them in the feature set, these
assaults can be detected.[2]
One way to exploit a CRLF vulnerability is to inject a CRLF
character into a web application in order to exploit a buffer
overflow vulnerability. Another way to exploit a CRLF
vulnerability is to inject a CRLF character into a web
application in order to exploit an XSS vulnerability.
Proposed framework to find CRLF vulnerability:

Figure 2: Proposed Framework

In this figure, the user will give a list of website links or

a single link when running CRLF. After that, the application
will check for header responses if there is CR or LF signs
based on that application and will make sure whether it is
vulnerable or not vulnerable.
This framework will give fewer false positive alerts than
other applications.
An extract of the complete HTTP GET request is shown
below:[1]

Figure 3: CRLF in the header

In this figure, it is a header request where CRLF means
the CR and LF tag can be found. CR and LF are special
characters (ASCII 13 and 10 respectively, also referred to
as \r and \n) that are used to signify the End of Line (EOL).
They’re used to note the termination of a line, however,
dealt with differently in today’s popular Operating Systems.

4. Result and Discussions

Our study concentrated on determining the presence
and consequences of CRLF vulnerabilities in the wild as
well as investigating potential remedies and the most
effective methods for avoiding and overcoming these
problems. Our research shows that CRLF vulnerabilities
affect a large number of websites and online apps and that
they are rather widespread in web applications. These flaws
might have detrimental effects, such as allowing hackers to
insert malicious code into a website or application, which
could result in data breaches, identity theft, and other
security breaches. We advise using a number of quality
standards, such as input validation, sanitization, and
encoding of user input, as well as routine testing and
monitoring of web applications to discover and resolve any
vulnerabilities, in order to mitigate these issues. Overall, our
research emphasizes how critical it is to handle online
security in a proactive manner, including routinely
identifying and patching possible vulnerabilities like CRLF
issues. By doing this, businesses can defend themselves
against security flaws, guarantee the security of their users,
and safeguard their websites and apps.

Figure 4: Vulnerability chart

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.2, February 2023

202

The findings of this investigation showed that a total of

40 websites were examined using the suggested framework
for locating CRLF vulnerabilities, which are shown in
Figure 4. Three out of the forty websites were determined
to be vulnerable to CRLF injection attacks, according to the
data graph.

For some legal issues, it’s not possible to disclose the

target website’s name or website address.

Figure 5: Comparison chart

The findings of the research showed that 40 websites
were examined for CRLF vulnerabilities using three distinct
frameworks which are depicted in Figure 5. According to
the statistics in the figure, the suggested framework was
able to find more susceptible websites than Acunetix and
Metasploit Pro combined.

5. Conclusion

This study's objective was to better our knowledge
about CRLF vulnerabilities in web applications. This study
examined the characteristics and potential repercussions of
CRLF vulnerabilities as well as techniques for spotting and
reducing these dangers. The suggested framework was
more effective than the already available tools and had
fewer false positives. Our research has shown the
significance of taking CRLF vulnerabilities into account
during the software development lifecycle and highlighted
how they could affect the security of online applications. By
offering practical knowledge that may assist people and
organizations in defending against the continuously
changing threats in the digital world, this study has also
contributed to the larger area of cyber security.

6. References

[1] Hassan, M.M., Bhuyian, T., Sohel, M.K., Sharif, M.H. and
Biswas, S., 2018. SAISAN: An automated Local File
Inclusion vulnerability detection model. International
Journal of Engineering & Technology, 7(2-3), p.4.

[2] Agarwal, V., Hubballi, N., Chitrakar, A.S. and Franke, K.,
2019, December. Identifying Anomalous HTTP Traffic with
Association Rule Mining. In 2019 IEEE International
Conference on Advanced Networks and Telecommunications
Systems (ANTS) (pp. 1-6). IEEE.

[3] Suroto, S., 2017. A review of defense against slow HTTP
attack. JOIV: International Journal on Informatics
Visualization, 1(4), pp.127-134.

[4] Kshirsagar, D. and Kumar, S., 2016, August. HTTP flood
attack detection using ontology. In Proceedings of the
International Conference on Advances in Information
Communication Technology & Computing (pp. 1-4).

[5] Dukes, L., Yuan, X. and Akowuah, F., 2013, April. A case
study on web application security testing with tools and
manual testing. In 2013 Proceedings of IEEE Southeastcon
(pp. 1-6). IEEE.

[6] Mohammadi, M., Chu, B. and Lipford, H.R., 2017, July.
Detecting cross-site scripting vulnerabilities through
automated unit testing. In 2017 IEEE International
Conference on Software Quality, Reliability and Security
(QRS) (pp. 364-373). IEEE.

[7] Buja, G., Abd Jalil, K.B., Ali, F.B.H.M. and Rahman, T.F.A.,
2014, April. Detection model for SQL injection attack: An
approach for preventing a web application from the SQL
injection attack. In 2014 IEEE Symposium on Computer
Applications and Industrial Electronics (ISCAIE) (pp. 60-64).
IEEE.

[8] Ami, P.V. and Malav, S.C., 2013. Top five dangerous
security risks over web application. International Journal of
Emerging Trends & Technology in Computer Science, 2(1),
pp.41-43.

[9] Al-Khurafi, O.B. and Al-Ahmad, M.A., 2015, December.
Survey of web application vulnerability attacks. In 2015 4th
International Conference on Advanced Computer Science
Applications and Technologies (ACSAT) (pp. 154-158). IEEE.

[10] Gupta, S. and Gupta, B.B., 2015, May. PHP-sensor: a
prototype method to discover workflow violation and XSS
vulnerabilities in PHP web applications. In Proceedings of
the 12th ACM international conference on computing
frontiers (pp. 1-8).

[11] Shar, L.K. and Tan, H.B.K., 2012. Automated removal of
cross site scripting vulnerabilities in web applications.
Information and Software Technology, 54(5), pp.467-478.

