DOI QR코드

DOI QR Code

A Cooperative Multiagent System for Enhancing Smart Grid Performance

  • Mohammad A Obeidat (Tafila Technical University, Engineering College, Electrical Power and Mechatronics Dep.)
  • Received : 2023.02.05
  • Published : 2023.02.28

Abstract

Sharing power data between electrical power grids is crucial in energy management. The multi-agent approach has been applied in various applications to improve the development of complex systems by making them both independent and collaborative. The smart grid is one of the most intricate systems that requires a higher level of independence, reliability, protection, and adaptability to user requests. In this paper, a multi-agent system is utilized to share knowledge and tackle challenges in smart grids. The shared information is used to make decisions that aid in power distribution management within the grid and with other networks. The proposed multi-agent mechanism improves the reliability of the power system by providing the necessary information at critical times. The results indicate that the multi-agent system operates efficiently and promptly, making it a highly promising candidate for smart grid management.

Keywords

References

  1. Zhang, Lee, D., & Cheng, C. C. (2016). Energy savings by energy management systems: A review. Renewable and Sustainable Energy Reviews, 56, 760-777. https://doi.org/10.1016/j.rser.2015.11.067
  2. Aman, S., Simmhan, Y., & Prasanna, V. K. (2013). Energy management systems: state of the art and emerging trends. IEEE Communications Magazine, 51(1), 114-119.
  3. Abbasi, A., Sultan, K., Aziz, M. A., Khan, A. U., Khalid, H. A., Guerrero, J. M., & Zafar, B. A. (2021). A novel dynamic appliance clustering scheme in a community home energy management system for improved stability and resiliency of microgrids. IEEE Access, 9, 142276-142288. https://doi.org/10.1109/ACCESS.2021.3119538
  4. Rauchfuss, L., Foulquier, J., & Werner, R. (2014, May). Charging station as an active filter for harmonics compensation of smart grid. In 2014 16th International Conference on Harmonics and Quality of Power (ICHQP) (pp. 181-184). IEEE.
  5. Altawil, I. A., Mahafzah, K. A., & Smadi, A. A. (2012, December). Hybrid active power filter based on diode clamped inverter and hysteresis band current controller. In 2012 2nd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA) (pp. 198-203). IEEE.
  6. Khan, M. I. U., & Riaz, M. (2016). Various types of smart grid techniques: a review. Int J of Multidiscip Sci and Eng, 7(8), 7.
  7. Moazeni, F., Khazaei, J., & Asrari, A. (2021). Step towards energy-water smart microgrids; buildings thermal energy and water demand management embedded in economic dispatch. IEEE Transactions on Smart Grid, 12(5), 3680-3691. https://doi.org/10.1109/TSG.2021.3068053
  8. Brown, R. E. (2017). Electric power distribution reliability. CRC press.
  9. Mendoza, J. E., Lopez, M. E., Coello, C. C., & Lopez, E. A. (2009). Microgenetic multiobjective reconfiguration algorithm considering power losses and reliability indices for medium voltage distribution network. IET Generation, Transmission & Distribution, 3(9), 825-840. https://doi.org/10.1049/iet-gtd.2009.0009
  10. Ramos, E. R., Exposito, A. G., Santos, J. R., & Iborra, F. L. (2005). Path-based distribution network modeling: application to reconfiguration for loss reduction. IEEE Transactions on power systems, 20(2), 556-564. https://doi.org/10.1109/TPWRS.2005.846212
  11. Cebrian, J. C., & Kagan, N. (2010). Reconfiguration of distribution networks to minimize loss and disruption costs using genetic algorithms. Electric Power Systems Research, 80(1), 53-62. https://doi.org/10.1016/j.epsr.2009.08.005
  12. Jeon, Y. J., Kim, J. C., Kim, J. O., Shin, J. R., & Lee, K. Y. (2002). An efficient simulated annealing algorithm for network reconfiguration in large-scale distribution systems. IEEE Transactions on Power Delivery, 17(4), 1070-1078. https://doi.org/10.1109/TPWRD.2002.803823
  13. Lopez, J. C., Lavorato, M., Franco, J. F., & Rider, M. J. (2016). Robust optimisation applied to the reconfiguration of distribution systems with reliability constraints. IET Generation, Transmission & Distribution, 10(4), 917-927. https://doi.org/10.1049/iet-gtd.2015.0558
  14. de Oliveira, L. W., Seta, F. D. S., & de Oliveira, E. J. (2016). Optimal reconfiguration of distribution systems with representation of uncertainties through interval analysis. International Journal of Electrical Power & Energy Systems, 83, 382-391. https://doi.org/10.1016/j.ijepes.2016.04.020
  15. Vovos, P. N., Kiprakis, A. E., Wallace, A. R., & Harrison, G. P. (2007). Centralized and distributed voltage control: Impact on distributed generation penetration. IEEE Transactions on power systems, 22(1), 476-483. https://doi.org/10.1109/TPWRS.2006.888982
  16. Xu, T., & Taylor, P. C. (2008). Voltage control techniques for electrical distribution networks including distributed generation. IFAC Proceedings Volumes, 41(2), 11967-11971. https://doi.org/10.3182/20080706-5-KR-1001.02025
  17. Cavalcante, P. L., Lopez, J. C., Franco, J. F., Rider, M. J., Garcia, A. V., Malveira, M. R., ... & Direito, L. C. M. (2015). Centralized self-healing scheme for electrical distribution systems. IEEE transactions on smart grid, 7(1), 145-155.
  18. Jiang, D., & Baldick, R. (1996). Optimal electric distribution system switch reconfiguration and capacitor control. IEEE transactions on Power Systems, 11(2), 890-897. https://doi.org/10.1109/59.496171
  19. Boemer, J. C., Gibescu, M., & Kling, W. L. (2009). Dynamic models for transient stability analysis of transmission and distribution systems with distributed generation: An overview. 2009 IEEE Bucharest PowerTech, 1-8.
  20. Riccobono, A., & Santi, E. (2014). Comprehensive review of stability criteria for DC power distribution systems. IEEE Transactions on Industry Applications, 50(5), 3525-3535. https://doi.org/10.1109/TIA.2014.2309800