DOI QR코드

DOI QR Code

가로수와 바닥 포장 표면 알베도의 도시 열 환경 개선 효과

Impact of Urban Thermal Environment Improvement by Street Trees and Pavement Surface Albedo

  • 김나연 (서울대학교 생태조경.지역시스템공학부 ) ;
  • 김은섭 (서울대학교 환경대학원 협동과정 조경학 ) ;
  • 윤석환 (서울대학교 환경대학원 협동과정 조경학 ) ;
  • 박정강 (서울대학교 생태조경.지역시스템공학부 ) ;
  • 김상혁 (서울대학교 생태조경.지역시스템공학부 ) ;
  • 남상준 ((주)현우그린 ) ;
  • 제화준 ((주)현우그린 ) ;
  • 이동근 (서울대학교 농업생명과학대학)
  • Na-youn Kim (Dept. of Landscape Architecture and Rural System Engineering, Seoul National University) ;
  • Eun-sub Kim (Interdisciplinary program in Landscape Architecture, Seoul National University) ;
  • Seok-hwan Yun (Interdisciplinary program in Landscape Architecture, Seoul National University) ;
  • Zheng-gang Piao (Dept. of Landscape Architecture and Rural System Engineering, Seoul National University) ;
  • Sang-hyuck Kim (Dept. of Landscape Architecture and Rural System Engineering, Seoul National University) ;
  • Sang-jun Nam (Hyunwoo Green Co.) ;
  • Hwa-Jun Jea (Hyunwoo Green Co.) ;
  • Dong-kun Lee (Korea institute of green infrastructure)
  • 투고 : 2022.12.29
  • 심사 : 2023.01.27
  • 발행 : 2023.02.28

초록

Due to climate change and urbanization, abnormally high temperatures and heat waves are expected to increase in urban and deteriorate thermal comfort. Planting of street trees and changing the albedo of urban surfaces are the strategies for mitigating the thermal environment of urban, and both of these strategies affect the exposure and blocking of radiative fluxes to pedestrians. After measuring the shortwave and longwave radiation according to the ground surface with different albedo and the presence of street trees using the CNR4 net radiometer, this study analyzed the relationship between this two strategies in terms of thermal environment mitigation by calculating the MRT(Mean Radiant Temperature) of each environment. As a result of comparing the difference between the downward shortwave radiation measured under the right tree and at the control, the shortwave radiation blocking effect of the tree increased as the downward shortwave radiation increased. During daytime hours (from 11 am to 3 pm), the MRT difference caused by the albedo difference(The albedo of the surfaces are 0.479 and 0.131, respectively.) on surfaces with no tree is approximately 3.58℃. When tree is present, the MRT difference caused by the albedo difference is approximately 0.49℃. In addition, in the case of the light-colored ground surface with high albedo, the surface temperature was low and the range of temperature change was lower than the surrounding surface with low albedo. This result shows that the urban thermal environment can be midigate through the planting of street trees, and that the ground surface with high albedo can be considered for short pedestrians. These results can be utilized in planning street and open space in urban by choosing surfaces with high albedo along with the shading effect of vegetation, considering the use by various users.

키워드

참고문헌

  1. ASHRAE, F. (2013). Fundamentals handbook. IP Edition, 21.
  2. Banfi, A., Tatti, A., Ferrando, M., Fustinoni, D., Zanghirella, F., & Causone, F. (2022). An experimental technique based on globe thermometers for the measurement of mean radiant temperature in urban settings. Building and Environment, 222, 109373.
  3. Baniassadi, A., Sailor, D. J., Crank, P. J., & Ban-Weiss, G. A. (2018). Direct and indirect effects of high-albedo roofs on energy consumption and thermal comfort of residential buildings. Energy and Buildings, 178, 71-83. https://doi.org/10.1016/j.enbuild.2018.08.048
  4. Erell, E., Pearlmutter, D., Boneh, D., & Kutiel, P. B. (2014). Effect of high-albedo materials on pedestrian heat stress in urban street canyons. Urban climate, 10, 367-386. https://doi.org/10.1016/j.uclim.2013.10.005
  5. Guo, H., Aviv, D., Loyola, M., Teitelbaum, E., Houchois, N., & Meggers, F. (2020). On the understanding of the mean radiant temperature within both the indoor and outdoor environment, a critical review. Renewable and Sustainable Energy Reviews, 117, 109207.
  6. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Pean, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekci, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In press, doi:10.1017/9781009157896.
  7. Jamei, E., Rajagopalan, P., Seyedmahmoudian, M., & Jamei, Y. (2016). Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renewable and Sustainable Energy Reviews, 54, 1002-1017. https://doi.org/10.1016/j.rser.2015.10.104
  8. Kim, Y. J., Lee, C., & Kim, J. H. (2018). Sidewalk landscape structure and thermal conditions for child and adult pedestrians. International journal of environmental research and public health, 15(1), 148.
  9. Lee, H., & Mayer, H. (2016). Validation of the mean radiant temperature simulated by the RayMan software in urban environments. International journal of biometeorology, 60(11), 1775-1785. https://doi.org/10.1007/s00484-016-1166-3
  10. Lee, H., & Mayer, H. (2018). Thermal comfort of pedestrians in an urban street canyon is affected by increasing albedo of building walls. International journal of biometeorology, 62(7), 1199-1209. https://doi.org/10.1007/s00484-018-1523-5
  11. Murty, B. P. (2004). Environmental meteorology. IK International Pvt. Limited.
  12. Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1-24. https://doi.org/10.1002/qj.49710845502
  13. Shi, Y., Song, Z., Zhang, W., Song, J., Qu, J., Wang, Z., ... & Lin, J. (2013). Physicochemical properties of dirt-resistant cool white coatings for building energy efficiency. Solar energy materials and solar cells, 110, 133-139. https://doi.org/10.1016/j.solmat.2012.12.011
  14. Taleghani, M., & Berardi, U. (2018). The effect of pavement characteristics on pedestrians' thermal comfort in Toronto. Urban climate, 24, 449-459. https://doi.org/10.1016/j.uclim.2017.05.007
  15. Tan, C. L., Wong, N. H., & Jusuf, S. K. (2013). Outdoor mean radiant temperature estimation in the tropical urban environment. Building and Environment, 64, 118-129. https://doi.org/10.1016/j.buildenv.2013.03.012
  16. Thom, J. K., Coutts, A. M., Broadbent, A. M., & Tapper, N. J. (2016). The influence of increasing tree cover on mean radiant temperature across a mixed development suburb in Adelaide, Australia. Urban forestry & urban greening, 20, 233-242. https://doi.org/10.1016/j.ufug.2016.08.016
  17. Thorsson, S., Lindberg, F., Eliasson, I., & Holmer, B. (2007). Different methods for estimating the mean radiant temperature in an outdoor urban setting. International Journal of Climatology: A Journal of the Royal Meteorological Society, 27(14), 1983-1993.
  18. Thorsson, S., Rocklov, J., Konarska, J., Lindberg, F., Holmer, B., Dousset, B., & Rayner, D. (2014). Mean radiant temperature-A predictor of heat related mortality. Urban Climate, 10, 332-345.
  19. Vanos, J. K. (2015). Children's health and vulnerability in outdoor microclimates: A comprehensive review. Environment international, 76, 1-15. https://doi.org/10.1016/j.envint.2014.11.016
  20. VDI. 1994. Environmentalmeteorology, interactionsbe tweenatmosphere and surface; calculation of short-and long wave radiation.Part I: Climate, VDI 3789, Part 2: VDI/DIN-Handbuch Reinhaltungder Luft, Band 1b, Dusseldorf.
  21. Vinayak, B., Lee, H. S., Gedam, S., & Latha, R. (2022). Impacts of future urbanization on urban microclimate and thermal comfort over the Mumbai metropolitan region, India. Sustainable Cities and Society, 79, 103703.
  22. Walikewitz, N., Janicke, B., Langner, M., Meier, F., & Endlicher, W. (2015). The difference between the mean radiant temperature and the air temperature within indoor environments: A case study during summer conditions. Building and Environment, 84, 151-161.
  23. Wong, N. H., Tan, C. L., Kolokotsa, D. D., & Takebayashi, H. (2021). Greenery as a mitigation and adaptation strategy to urban heat. Nature Reviews Earth & Environment, 2(3), 166-181. https://doi.org/10.1038/s43017-020-00129-5