DOI QR코드

DOI QR Code

Experimental Study on Frictional Healing Behavior of Rock Joints in the Natural Barriers under Hydro-Mechanical Conditions

천연방벽 내 암반 절리의 수리-역학적 조건에서의 마찰회복 거동에 대한 실험적 연구

  • Yong-Ki Lee (Korea Atomic Energy Research Institute (KAERI)) ;
  • Seungbeom Choi (Korea Atomic Energy Research Institute (KAERI)) ;
  • Kyung-Woo Park (Korea Atomic Energy Research Institute (KAERI)) ;
  • Jin-Seop Kim (Korea Atomic Energy Research Institute (KAERI)) ;
  • Taehyun Kim (Korea Atomic Energy Research Institute (KAERI))
  • Received : 2023.02.14
  • Accepted : 2023.02.21
  • Published : 2023.02.28

Abstract

In deep geological disposal of high-level radioactive waste (HLW), the natural barrier must physically support the disposal facility and delay the movement of radionuclides for at least hundreds of thousands of years. To evaluate the long-term geological evolution of the natural barriers, it is essential to analyze the long-term behavior of rock joints, including the frictional healing behavior. This study aimed to experimentally analyze the frictional healing behavior of rock joints under hydro-mechanical (H-M) conditions through the slide-hold-slide (SHS) test. The SHS tests were performed under mechanical and H-M conditions for joint specimens of different roughness. In the H-M conditions, the frictional healing rate tended to increase, which was more evident in the specimens with large roughness. In addition, it was confirmed that the effect of the hydro-mechanical conditions was more significant when the effective normal stress acting on the joint surface was small. These results are expected to be used as fundamental data to understand the frictional healing behavior of rock joints in the natural barriers.

고준위방사성폐기물의 심층처분시스템에서 천연방벽은 처분시설을 물리적으로 지지함과 동시에 방사성 핵종의 이동을 지연시키는 역할을 최소 수십만년 이상 수행해야 한다. 천연방벽의 지구조적 장기진화평가를 위해서는 암반 절리의 장기거동 분석이 필수적이며, 여기에는 마찰회복 거동이 포함된다. 본 연구에서는 암반 절리의 수리-역학적 조건 하 마찰회복 거동을 슬라이드-홀드-슬라이드(slide-hold-slide, SHS) 실험을 통해 실험적으로 분석해 보고자 하였으며, 이를 위해 서로 다른 거칠기의 절리 시험편을 대상으로 역학적 및 수리-역학적 조건에서 SHS 실험을 수행하였다. 수리-역학적 조건에서 마찰회복률은 더 증가하는 경향을 보였으며, 이는 거칠기가 큰 시험편에서 더 분명하게 나타났다. 또한, 절리면에 작용하는 유효 수직응력이 작은 경우에 수리-역학적 조건의 영향이 더 크게 작용함을 확인할 수 있었다. 이러한 결과들은 천연방벽 암반 절리의 마찰회복 거동을 파악하는 데 유용한 기초자료로 활용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부의 재원으로 사용후핵연료관리핵심기술개발사업단 (2021M2E1A1085193, 2021M2E1A1085200)의 지원을 받아 수행되었습니다.

References

  1. Dieterich, J.H., 1972, Time-dependent friction in rocks, Journal of Geophysical Research, 77, 3690-3697. https://doi.org/10.1029/JB077i020p03690
  2. Dieterich, J.H., 1974, Modeling of rock friction: 1, Experimental results and constitutive equations, Journal of Geophysical Research, 84, 2161-2168. https://doi.org/10.1029/JB084iB05p02161
  3. Dieterich, J.H. and Kilgore, B.D., 1994, Direct observation of frictional contacts: New insights for state-dependent properties, Pure and Applied Geophysics, 143, 283-302. https://doi.org/10.1007/BF00874332
  4. Hakala, M., Strom, J., Valli, J., and Juvani, J., 2019, Structural control on stress variability at Forsmark (No. SKB-R-19-23), SKB.
  5. He, L., Zhao, Z., Chen, J., and Liu, D., 2020, Empirical shear strength criterion for rock joints based on joint surface degradation characteristics during shearing, Rock Mechanics and Rock Engineering, 53(8), 3609-3624. https://doi.org/10.1007/s00603-020-02120-4
  6. IAEA, 2011, Geological disposal facilities for radioactive waste, Specific safety guide No. SSG-14, IAEA, Vienna, Austria.
  7. Kim, T. and Jeon, S., 2011, Shearing behavior of a rupture surface of rock under thermo-hydro-mechanical coupled conditions, International Journal of Geo-Engineering, 3(3), 23-31.
  8. Kim, T. and Jeon, S., 2016, A study on shear characteristics of a rock discontinuity under various thermal, hydraulic and mechanical conditions, Tunnel and Underground Space, 26(2), 68-86. https://doi.org/10.7474/TUS.2016.26.2.068
  9. Kim, T. and Jeon, S., 2019, Experimental study on shear behavior of a rock discontinuity under various thermal, hydraulic and mechanical conditions, Rock Mechanics and Rock Engineering, 52(7), 2207-2226. https://doi.org/10.1007/s00603-018-1723-7
  10. Kishida, K., Kawaguchi, Y., Nakashima, S., and Yasuhara, H., 2011, Estimation of shear strength recovery and permeability of single rock fractures in shear-hold-shear type direct shear tests, International Journal of Rock Mechanics and Mining Sciences, 48(5), 782-793. https://doi.org/10.1016/j.ijrmms.2011.04.002
  11. Kishida, K., Yano, T., and Yasuhara, H., 2012, Healing and shear stress reduction of rock salt single fracture under slide-hold-slide direct shear experiments, Proceeding of the 7th Asian Rock Mechanics Symposium, Seoul, South Korea.
  12. Kishida, K., Tsuda, N., and Yano, T., 2014, Time dependency friction factor of rock single fracture under slide-hold-slide direct shear experiments, Proceeding of the 48th US Rock Mechanics/Geomechanics Symposium, Minneapolis, USA.
  13. Kovari, K., Tisa, A., and Attinger, R.O., 1983, The concept of "continuous failure state" triaxial tests. Rock Mechanics and Rock Engineering, 16, 117-131. https://doi.org/10.1007/BF01032794
  14. Lee, Y.K., Park, J.W., and Song, J.J., 2014, Model for the shear behavior of rock joints under CNL and CNS conditions, International Journal of Rock Mechanics and Mining Sciences, 70, 252-263. https://doi.org/10.1016/j.ijrmms.2014.05.005
  15. Marone, C., 1998, The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle, Nature, 391, 69-72. https://doi.org/10.1038/34157
  16. Park, J.W., Lee, Y.K., Song, J.J., and Choi, B.H., 2013, A constitutive model for shear behavior of rock joints based on three-dimensional quantification of joint roughness, Rock Mechanics and Rock Engineering, 46, 1513-1537. https://doi.org/10.1007/s00603-012-0365-4
  17. Tesei, T., Collettini, C., Carpenter, B.M., Viti, C., and Marone, C., 2012, Frictional strength and healing behavior of phyllosilicate-rich faults, Journal of Geophysical Research, 117, B09402.
  18. Tse, R. and Cruden, D.M., 1979, Estimating joint roughness coefficients, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16(5), 303-307. https://doi.org/10.1016/0148-9062(79)90241-9
  19. Valli, J., Kuula, H., and Hakala, M., 2011, Modelling of the in situ stress state at Olkiluoto Site, Western Finland (No. POSIVA-WR-11-34). Posiva Oy.
  20. Woo, S., Han, R., Kim, C-M., and Lee, H., 2016, Relation between temporal change of fault rock materials and mechanical properties, Journal of the Geological Society of Korea, 52(6), 847-861. https://doi.org/10.14770/jgsk.2016.52.6.847
  21. Yasuhara, H., Marone, C., and Elsworth, D., 2005, Fault zone restrengthening and frictional healing: The role of pressure solution, Journal of Geophysical Research, 110, 1-11. https://doi.org/10.1029/2004JB003327