DOI QR코드

DOI QR Code

Case Studies on the Experiments for Long-Term Shear Behavior of Rock Discontinuities

암반 내 불연속면의 장기 전단 거동 평가를 위한 고찰

  • Juhyi Yim (Convergence and Open Sharing System for New Energy Industry, Seoul National University) ;
  • Saeha Kwon (Korea Atomic Energy Research Institute (KAERI)) ;
  • Seungbeom Choi (Korea Atomic Energy Research Institute (KAERI)) ;
  • Taehyun Kim (Korea Atomic Energy Research Institute (KAERI)) ;
  • Ki-Bok Min (Department of Energy Resources Engineering, Seoul National University)
  • 임주휘 (서울대학교 에너지신산업 혁신공유대학사업단) ;
  • 권새하 (한국원자력연구원) ;
  • 최승범 (한국원자력연구원) ;
  • 김태현 (한국원자력연구원 ) ;
  • 민기복 (서울대학교 에너지자원공학과)
  • Received : 2023.02.06
  • Accepted : 2023.02.17
  • Published : 2023.02.28

Abstract

Long-term shear behavior of the rock discontinuities should be analyzed and its stability should be evaluated to ensure the long-term stability of a high-level radioactive waste disposal repository. The long-term shear behavior of the discontinuities can be modeled with creep and RSF models. The shear creep test, velocity step test, and slide-hold-slide test can be performed to determine their model parameters or analyze the shear behavior by experiments under various conditions. Testing apparatuses for direct shear, triaxial compression, and biaxial shear were mainly used and improved to reproduce the thermo-hydro-mechanical conditions of local bedrock, and it was confirmed that the shear behavior could vary. In order to design a high-level radioactive waste disposal site in Korea, the long-term behavior of rock discontinuities should be investigated in consideration of rock types, thermo-hydro-mechanical conditions, metamorphism, and restoration of shear resistance.

고준위방사성폐기물 처분장의 장기 안정성을 확보하기 위해서 암반 불연속면의 장기적인 전단 거동을 분석하고 그 안정성을 평가해야 한다. 암반 불연속면의 장기 전단 거동은 크리프 모델, RSF 모델로 모사될 수 있고, 전단 크리프 시험, 속도 단계 시험, 슬라이드-홀드-슬라이드 시험을 통해 모델에 필요한 파라미터를 결정하거나 여러 조건에서 전단 거동을 분석하는 실험을 수행할 수 있다. 기존 연구에 따르면 전단 실험을 위하여 직접전단시험기, 삼축압축시험기, 이축전단시험기가 주로 이용되었으며 현지 암반의 열-수리-역학적인 조건을 재현하기 위해 다양하게 개선된 장비가 이용되었고 그에 따라 다양한 양상의 전단 거동이 관찰되었다. 그러므로 국내 고준위방사성폐기물 처분장을 설계하기 위해서 처분장 부지의 암종, 열-수리-역학적 조건, 광물의 변성, 그리고 전단 저항의 회복 등을 고려하여 암반 불연속면의 장기 거동을 검토해야 한다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부의 재원으로 사용후핵연료관리핵심기술개발사업단(2021M2E1A1085193)의 지원을 받아 수행되었습니다.

References

  1. An, M., Zhang, F., Min, K.B., Elsworth, D., He, C., and Zhao, L., 2022, Frictional Stability of Metamorphic Epidote in Granitoid Faults Under Hydrothermal Conditions and Implications for Injection-Induced Seismicity, Journal of Geophysical Research: Solid Earth, 127(3), e2021JB023136.
  2. Aydan, O., Ito, T., Ozbay, U., Kwasniewski, M., Shariar, K., Okuno, T., Ozgenoglu, A., Malan, D., and Okada, T., 2015, ISRM suggested methods for determining the creep characteristics of rock, The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014, 115-130.
  3. Barton, N., 1973, Review of a new shear-strength criterion for rock joints. Engineering Geology, 7, 287-332. https://doi.org/10.1016/0013-7952(73)90013-6
  4. Boukharov, G.N., Chanda, M.W., and Boukharov, N.G., 1995, The three processes of brittle crystalline rock creep, In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(4), 325-335. https://doi.org/10.1016/0148-9062(94)00048-8
  5. Curran, J.H. and Crawford, A.M., 1980, A comparative study of creep in rock and its discontinuities, In The 21st US Symposium on Rock Mechanics (USRMS), OnePetro, ARMA-80-0596.
  6. Donath, F.A., Fruth, L.S., and Olsson, W.A., 1972, Experimental study of frictional properties of faults. In The 14th US Symposium on Rock Mechanics (USRMS), OnePetro, ARMA-72-0189.
  7. Farmer, I.W., 2012, Engineering behaviour of rocks. Springer Science & Business Media. 
  8. Foulger, G.R., Wilson, M.P., Gluyas, J.G., Julian, B.R., and Davies, R.J., 2018, Global review of human-induced earthquakes, Earth-Science Reviews, 178, 438-514. https://doi.org/10.1016/j.earscirev.2017.07.008
  9. Goodman, R.E. and Ohnishi, Y., 1973, Undrained shear testing of jointed rock. Rock Mechanics, 5(3), 129-149. https://doi.org/10.1007/BF01238044
  10. Goodman, R.E., 1989, Introduction to rock mechanics, Wiley, New York, 2, 221-388.
  11. Jaeger, J.C., 1959, The frictional properties of joints in rock. Geofisica pura e applicata, 43(1), 148-158. https://doi.org/10.1007/BF01993552
  12. Ji, F., Li, R., Feng, W., and Wang, D., 2020, Modeling and identification of the constitutive behavior of embedded non-persistent joints using triaxial creep experiments. International Journal of Rock Mechanics and Mining Sciences, 133, 104434.
  13. Jia, C.J., Xu, W.Y., Wang, R.B., Wang, S.S., and Lin, Z.N., 2018, Experimental investigation on shear creep properties of undisturbed rock discontinuity in Baihetan Hydropower Station, International Journal of Rock Mechanics and Mining Sciences, 104, 27-33. https://doi.org/10.1016/j.ijrmms.2018.02.011
  14. Kilgore, B., Beeler, N.M., Lozos, J., and Oglesby, D., 2017, Rock friction under variable normal stress, Journal of Geophysical Research: Solid Earth, 122(9), 7042-7075. https://doi.org/10.1002/2017JB014049
  15. Kim, T. and Jeon, S., 2016. A Study on Shear Characteristics of a Rock Discontinuity under Various Thermal, Hydraulic and Mechanical Conditions, Tunnel and Underground Space, 26(1), 68-86. (In Korean) https://doi.org/10.7474/TUS.2016.26.2.068
  16. Kim, T. and Jeon, S., 2019, Experimental study on shear behavior of a rock discontinuity under various thermal, hydraulic and mechanical conditions, Rock Mechanics and Rock Engineering, 52(7), 2207-2226. https://doi.org/10.1007/s00603-018-1723-7
  17. Korea Meteorological Administration(KMA), 2021, Annual Report of Earthquake 2021. (In Korean)
  18. Korean Society of Rock Mechanics(KSRM), 2006, Standard test method for triaxial compression of rock, KSRM suggested method. (In Korean)
  19. Korean Society of Rock Mechanics(KSRM), 2009, Standard test methods for determining direct shear strength of rock in laboratory, KSRM suggested method. (In Korean)
  20. Korean Society of Rock Mechanics(KSRM), 2021, Suggested method for calculating nominal stress during direct shear test for rock core samples, KSRM suggested method. (In Korean)
  21. Kovari, K., Tisa, A., Einstein, H.H., and Franklin, J.A., 1983, Suggested methods for determining the strength of rock materials in triaxial compression: revised version, In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(6), 285-290. https://doi.org/10.1016/0148-9062(83)90598-3
  22. Lee, S. and Chang, C., 2013, Laboratory experiments on fracture shearing induced by pore pressure increase, In Proceeding of fall joint conference of the geological science, Jeju, Korea, 314-315.
  23. Lockner, D.A., Summers, R., Moore, D., and Byerlee, J.D., 1982, April. Laboratory measurements of reservoir rock from the Geysers Geothermal Field, California. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 19(2), 65-80. https://doi.org/10.1016/0148-9062(82)91632-1
  24. Marone, C. and Cox, S.J.D., 1994, Scaling of rock friction constitutive parameters: The effects of surface roughness and cumulative offset on friction of gabbro, Pure and Applied Geophysics, 143(1), 359-385. https://doi.org/10.1007/BF00874335
  25. Marone, C., 1997, On the rate of frictional healing and the constitutive law for time-and slip-dependent friction, International Journal of Rock Mechanics and Mining Sciences, 34(3-4), 187-e1.
  26. Marone, C., Raleigh, C.B., and Scholz, C.H., 1990, Frictional behavior and constitutive modeling of simulated fault gouge, Journal of Geophysical Research: Solid Earth, 95(B5), 7007-7025. https://doi.org/10.1029/JB095iB05p07007
  27. Mitchell, E.K., Fialko, Y., and Brown, K.M., 2013, Temperature dependence of frictional healing of Westerly granite: experimental observations and numerical simulations, Geochemistry, Geophysics, Geosystems, 14(3), 567-582. https://doi.org/10.1029/2012GC004241
  28. Mitchell, E.K., Fialko, Y., and Brown, K.M., 2016, Velocity-weakening behavior of Westerly granite at temperature up to 600℃, Journal of Geophysical Research: Solid Earth, 121(9), 6932-6946. https://doi.org/10.1002/2016JB013081
  29. Moore, D.E. and Lockner, D.A., 2008, Talc friction in the temperature range 25-400 C: Relevance for fault-zone weakening, Tectonophysics, 449(1-4), 120-132. https://doi.org/10.1016/j.tecto.2007.11.039
  30. Moore, D.E. and Lockner, D.A., 2011, Frictional strengths of talc-serpentine and talc-quartz mixtures, Journal of Geophysical Research: Solid Earth, 116(B1).
  31. Muralha, J., Grasselli, G., Tatone, B., Blumel, M., Chryssanthakis, P., and Yujing, J., 2014, ISRM suggested method for laboratory determination of the shear strength of rock joints: revised version, Rock Mechanics and Rock Engineering, 47, 291-302. https://doi.org/10.1007/s00603-013-0519-z
  32. Norbeck, J.H. and Horne, R.N., 2016, Evidence for a transient hydromechanical and frictional faulting response during the 2011 Mw 5.6 Prague, Oklahoma earthquake sequence. Journal of Geophysical Research: Solid Earth, 121(12), 8688-8705. https://doi.org/10.1002/2016JB013148
  33. Pakpoom, N., 2013, Effect of temperatures on shear strength of fractures in granite, Doctoral dissertation, Suranaree University of Technology.
  34. Park, B-K., Lee, C-S., and Jeon, S., 2007, Characteristics of velocity-dependent shear behavior of saw-cut rock joints at different shear velocities, Tunnel and Underground Space, 9(2), 121-131.
  35. Pluymakers, A.M. and Niemeijer, A.R., 2015, Healing and sliding stability of simulated anhydrite fault gouge: Effects of water, temperature and CO2, Tectonophysics, 656, 111-130. https://doi.org/10.1016/j.tecto.2015.06.012
  36. Ruina, A. 1983, Slip instability and state variable friction laws, Journal of Geophysical Research: Solid Earth, 88(B12), 10359-10370. https://doi.org/10.1029/JB088iB12p10359
  37. Samuelson, J. and Spiers, C.J., 2012, Fault friction and slip stability not affected by CO2 storage: Evidence from short-term laboratory experiments on North Sea reservoir sandstones and caprocks, International Journal of Greenhouse Gas Control, 11, S78-S90. https://doi.org/10.1016/j.ijggc.2012.09.018
  38. Scuderi, M.M. and Collettini, C., 2016, The role of fluid pressure in induced vs. triggered seismicity: Insights from rock deformation experiments on carbonates, Scientific Reports, 6(1), 1-9. https://doi.org/10.1038/s41598-016-0001-8
  39. Segall, P., Rubin, A.M., Bradley, A.M., and Rice, J.R., 2010, Dilatant strengthening as a mechanism for slow slip events, Journal of Geophysical Research: Solid Earth, 115(B12).
  40. Sharma, S. and Judd, W.R., 1991, Underground opening damage from earthquakes. Engineering Geology, 30(3-4), 263-276. https://doi.org/10.1016/0013-7952(91)90063-Q
  41. Wang, Z., Gu, L., Zhang, Q., and Jang, B.A., 2021, Influence of initial stress and deformation states on the shear creep behavior of rock discontinuities with different joint roughness coefficients. Rock Mechanics and Rock Engineering, 54(11), 5923-5936. https://doi.org/10.1007/s00603-021-02633-6
  42. Wang, Z., Shen, M., Ding, W., Jang, B., and Zhang, Q., 2018, Time-dependent behavior of rough discontinuities under shearing conditions, Journal of Geophysics and Engineering, 15(1), 51-61. https://doi.org/10.1088/1742-2140/aa83e9
  43. Woo, S., Han, R., Kim, C-M., and Lee, H., 2016, Relation between temporal change of fault rock materials and mechanical properties, Journal of the Geological Society of Korea, 52(6), 847-861. (In Korean) https://doi.org/10.14770/jgsk.2016.52.6.847
  44. Xu, T., Xu, Q., Tang, C.A., and Ranjith, P.G., 2013, The evolution of rock failure with discontinuities due to shear creep, Acta Geotechnica, 8, 567-581. https://doi.org/10.1007/s11440-013-0244-5
  45. Yoon, Y-K., Kim, B-C., and Jo, Y-D., 2010, Creep Characteristics of Granite in Gagok Mine, Tunnel and Underground Space, 20(5), 390-398. (In Korean)