농업에서의 ICT와 인공지능을 활용한 연구 개발 현황 조사

A Survey of The Status of R&D Using ICT and Artificial Intelligence in Agriculture

  • 강선호 (호서대학교 전자공학과)
  • Seonho Khang ( Dept. of Electronic Engineering, Hoseo University)
  • 투고 : 2023.03.08
  • 심사 : 2023.03.20
  • 발행 : 2023.03.31

초록

Agriculture plays an industrial and economic role, as well as an environmental and ecological conservation role, group harmony and the inheritance of traditional culture. However, no matter how advanced the industry is, the basic food necessary for human life can only be produced through the photosynthesis of plants with natural resources such as the sun, water, and air. The Food and Agriculture Organization of the United Nations (FAO) predicts that the world's population will increase by another 2 billion people by 2050, and it faces a myriad of complex and diverse factors to consider, including climate change, food security concerns, and global ecosystems and political factors. In particular, in order to solve problems such as increasing productivity and production of agricultural products, improving quality, and saving energy, it is difficult to solve them with traditional farming methods. Recently, with the wind of the 4th industrial revolution, ICT convergence technology and artificial intelligence have been rapidly developing in many fields, but it is also true that the application of new technologies is somewhat delayed due to the unique characteristics of agriculture. However, in recent years, as ICT and artificial intelligence utilization technologies have been developed and applied by many researchers, a revolution is also taking place in agriculture. This paper summarizes the current state of research so far in four categories of agriculture, namely crop cultivation environment management, soil management, pest management, and irrigation management, and smart farm research data that has recently been actively developed around the world.

키워드

참고문헌

  1. G. Bannerjee, U. Sarkar, S. Das, I. Ghosh, "Intelligencein Agriculture: A Literature Survey" International Journal of Scientific Research in Computer Science Applications and Management Studies, Vol.7, Issue 3, 2018.
  2. S. Lee, W. Lee, "A Study on Development of LED Lighting Module and Control System for Plant Growth", Journal of the Semiconductor & Display Technology, Vol. 18, No. 4. pp105-109, 2019.
  3. T. Bartzanas, T. Boulard, C. Kittas, "Numerical simulation of the airflow and temperature distribution in a tunnel greenhouse equipped with insect-proof screen in the openings", Computers and Electronics in Agriculture, Vol.34, Issues1-3, pp207-221, 2002. https://doi.org/10.1016/S0168-1699(01)00188-0
  4. S. Benni, P. Tassinari, F. Bonora, A. Barbaresi, D. Torreggiani, 2016a. "Efficacy of greenhouse natural ventilation: Environmental monitoring and CFD simulations of a study case", Energy Build. 125, 276- 286, 2016. https://doi.org/10.1016/j.enbuild.2016.05.014
  5. S. Nam, Y. Kim, D. Seo, "Change in the Plant Temperature of Tomato by Fogging and Airflow in Plastic Greenhouse", Protected Horticulture and Plant Factory, Vol. 23, No. 1, pp11-18, 2014. https://doi.org/10.12791/KSBEC.2014.23.1.011
  6. J. Chen, F. Xu, D. Tan, Z. Shen, L. Zhang, Q. Ai, "A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model", Applied Energy 141, pp106-118, 2015. https://doi.org/10.1016/j.apenergy.2014.12.026
  7. C. Guan, J. Liu, L. Hu, Q. Zhang, "Composite Environment Monitoring System for Edible Fungus Cultivation Based on ZigBee Technology", Advanced Materials Research ISSN: 1662-8985, Vol. 791-793, pp 975-979, 2013. https://doi.org/10.4028/www.scientific.net/AMR.791-793.975
  8. Choi, "Smart Farm Control System for Improving Energy Efficiency", J. of Digital Convergence, Vol.19, No.12, pp331-337, 2021.
  9. A. Dariouchy, E. Aassif, K. Lekouch, L. Bouirden, G. Maze, "Prediction of the intern parameters tomato greenhouse in a semi-arid area using a time-series model of artificial neural networks", Measurement 42, pp456-463, 2009. https://doi.org/10.1016/j.measurement.2008.08.013
  10. D. Jung, " Development of Artificial Intelligence-based Climate Control System for Smart Greenhouse", PhD Theses, College of Agriculture and Life Sciences, Seoul National University, 2020.
  11. B. Ban, S. Kim, "Control of nonlinear, complex and black-boxed greenhouse system with reinforcement learning", Information and Communication Technology Convergence (ICTC), 2017 International Conference On. IEEE, pp. 913-918, 2017.
  12. N. Eli-Chukwu, "Applications of Artificial Intelligence in Agriculture :A Review", Engineering, Technology & Applied Science Research, Vol. 9, No. 4, pp4377-4383, 2019. https://doi.org/10.48084/etasr.2756
  13. D. Powlson, P. Gregory, W. Whalley, J. Quinton, D. Hopkins, A. Whitmore, P. Hirsh, K. Goulding, "Soil management in relation to sustainable agriculture and ecosystem services", Vol. 36, Supp. 1, pp S72-S87, 2011. https://doi.org/10.1016/j.foodpol.2010.11.025
  14. M. Li, R. Yost, "Management-oriented modeling: optimizing nitrogen management with artificial intelligence", Agricultural Systems, Vol. 65, No. 1, pp1-27, 2000. https://doi.org/10.1016/S0308-521X(00)00023-8
  15. E. Lopez, M. Garcia, M. Schuhmacher, J. Domingo, "A fuzzy expert system for soil characterization", Environment International, Vol. 34, No. 7, pp. 950-958, 2008. https://doi.org/10.1016/j.envint.2008.02.005
  16. G. M. Pasqual, "Development of an expert system for the identification and control of weeds in wheat, triticale, barley and oat crops," Computers and electronics in agriculture, vol. 10 no. 2, pp117-134, 1994. https://doi.org/10.1016/0168-1699(94)90016-7
  17. R. S. Sicat, E. M. Carranza, and U. B. Nidumolu, "Fuzzy modeling of farmers' knowledge for land suitability classification," Agricultural systems, vol. 83 no.1, pp. 49-75, 2005. https://doi.org/10.1016/j.agsy.2004.03.002
  18. I. Broner, J. P. King, A. Nevo, "Structured induction for agricultural expert systems knowledge acquisition", Computers and Electronics in Agriculture, Volume 5, Issue 2, Pages 87-99, 1990. https://doi.org/10.1016/0168-1699(90)90025-K
  19. I. Broner, C. R. Comstock, "Combining expert systems and neural networks for learning site-specific conditions," Computers and electronics in agriculture, vol. 19 no.1, pp37-53, 1997. https://doi.org/10.1016/S0168-1699(97)00031-8
  20. C. Arif, M. Mizoguchi, B. I. Setiawan, M. Mizoguchi, R. Doi, "Estimation of soil moisture in paddy field using Artificial Neural Networks", International Journal of Advanced Research in Artificial Intelligence, Vol. 1, No. 1, 2012.
  21. M. S. U. Sourav, H. Wang, "Intelligent Identification of Jute Pests based on Transfer Learning and Deep Convolutional Neural Networks", Neural Processing Letters, 2022.
  22. G. M. Pasqual, J. Mansfield, "Development of a prototype expert system for identification and control of insect pests", Computers and Electronics in Agriculture, Volume 2, Issue 4, pp 263-276, 1988. https://doi.org/10.1016/0168-1699(88)90002-6
  23. M. Mozny, J. Krejci, I. Kott, "CORAC, hops protection management systems", Computers and Electronics in Agriculture, Vol. 9, Issue 2, Pages 103-110, 1993. https://doi.org/10.1016/0168-1699(93)90001-H
  24. J. D. Knight, M. E. Cammell, "A decision support system for forecasting infestations of the black bean aphid, Aphis fabae Scop., on spring-sown field beans, Vicia faba", Computers and Electronics in Agriculture, Vol. 10, Issue 3, pp269-279, 1994. https://doi.org/10.1016/0168-1699(94)90046-9
  25. B. D. Mahaman, H. C. Passam, A. B. Sideridis, C. P Yialouris, " DIARES-IPM: a diagnostic advisory rule-based expert system for integrated pest management in Solanaceous crop systems", Agricultural Systems, Vol. 76, Issue 3, pp1119-1135, 2003. https://doi.org/10.1016/S0308-521X(02)00187-7
  26. D. I. Patricio, R. Rieder, "Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review", Computers and Electronics in Agriculture, Volume 153, pp69-81, 2018. https://doi.org/10.1016/j.compag.2018.08.001
  27. T. Liu, W,. Chen, W. Wu, C. Sun, W. Guo, "Detection of aphids in wheat fields using a computer vision technique", Biosystems Engineering, Vol. 141, pp82-93, 2016. https://doi.org/10.1016/j.biosystemseng.2015.11.005
  28. J. Lee, Y. Lee, N. Choi, H. Park, H. Kim, "DeepLearning-based Plant Anomaly Detection using a Drone", Journal of the Semiconductor & Display Technology, Vol. 20, No. 1. Pp94-97, 2021.
  29. S. Chung, H. Elzain, V. Senapathi, K. Park, H. Kwon, I. Yoo, H. Oh, "Assessment of Groundwater Contamination Vulnerability in Miryang City, Korea using Advanced DRASTIC and fuzzy Techniques on the GIS Platform", J. Soil Groundwater Environ. Vol. 23(4), pp26~41, 2018.
  30. L. Meng, Q. Zhang, P. Liu, H. He, "Influence of Agricultural Irrigation Activity on the Potential Risk of Groundwater Pollution: A Study with Drastic Method in a Semi-Arid Agricultural Region of China", AGRIS, Sustainability, Vol. 12, Iss. 5, 1954, 2020.
  31. T. Talaviya, D. Shah, N. Patel, H. Yagnik, M.Shah "Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides", Artificial Intelligence in Agriculture, 4, pp58-73, 2020. https://doi.org/10.1016/j.aiia.2020.04.002
  32. H. K. Attar, H. Noory, H. Ebrahimian, A. Liaghat, "Efficiency and productivity of irrigation water based on water balance considering quality of return flows", Agricultural Water Management, Vol. 231, 106025, 2020.
  33. G. Kumar, "Research paper on water irrigation by using wireless sensor network", International Journal of Scientific Engineering and Technology, IEERT conference Paper, pp123-125, 2014.
  34. K. Anand, C. Jayakumar, M. Muthu, S. Amirneni, "Automatic drip irrigation system using fuzzy logic and mobile technology," 2015 IEEE Technological Innovation in ICT for Agriculture and Rural Development (TIAR), Chennai, India, 2015, pp. 54-58.
  35. I. Bennis, H. Fouchal, O. Zytoune, D. Aboutajdine, "Drip irrigation system using Wireless Sensor Networks," 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), Lodz, Poland, 2015, pp. 1297-1302.
  36. S. M. Umair, R. Usman, "Automation of Irrigation System Using ANN based Controller", International Journal of Electrical & Computer Sciences IJECSI-JENS Vol.10, No. 02, pp45-51, 2010.
  37. N. Karasekreter, F. Basciftci, U. Fidan, "A new suggestion for an irrigation schedule with an Artificial neural network", J. of Experimental & Theoretical Artificial Intelligence, Vol. 25, Issue 1, 2012.
  38. H. Zhou, "Intelligent Control of Agricultural Irrigation Based on Reinforcement Learning", Journal of Physics: Conference Series, Vol. 1601, 4, 2020.
  39. H. Aziz, L. Fatiha, M. Rachid, D. O. Abdeslam, "Study of Economic and Sustainable Energy Supply for Water Irrigation System (WIS)", Sustainable Energy, Grids and Networks, Vol. 25, 100412, 2021.
  40. S. Han, H. Joo, "Smart farm development strategy suitable for domestic situation -Focusing on ICT technical characteristics for the development of the industry6.0-", Journal of Digital Convergence, Vol. 20, No. 4, pp147-157, 2022. https://doi.org/10.14400/JDC.2022.20.4.147
  41. PNG(2016)Future agriculture led by smart farm https://home.kpmg/kr/ko/home/insights/2016/10/issue-monitor-62.html.
  42. M. Ahn, C. Heo, "The Effect of Technical Characteristics of Smart Farm on Acceptance Intention by Mediating Effect of Effort Expectation", Journal of Digital Convergence, Vol. 17, No. 6, pp145-157, 2019.
  43. H. Hoe, E. Lee, "Types of Vertical Smart Farms and Awareness of their use in Korean Cities Types and Feasibility Analysis of Vertical Smart Farms in Korean Cities", J. People Plants Environ. Vol. 24, No. 3, pp257-266, 2021. https://doi.org/10.11628/ksppe.2021.24.3.257
  44. T. Guo and W. Zhong, "Design and implementation of the span greenhouse agriculture Internet of Things system," 2015 International Conference on Fluid Power and Mechatronics (FPM), Harbin, China, 2015, pp. 398-401.
  45. M. Amiri-Zarandi, M. H. Fard, S. Yousefinaghani, M. Kaviani, "A Platform Approach to Smart Farm Information Processing", Agriculture 2022, 12, 838, https://doi.org/10.3390/ agriculture12060838.
  46. H. Choi, H. Ahn, Y. Jeong, B. Lee, "A Smart Farm Environment Optimization and Yield Prediction Platform based on IoT and Deep Learning", The Journal of Korea Institute of Information, Electronics, and Communication Technology, Vol. 12, Issue 6, pp672-680, 2019.