Nanoscale Characterization of a Heterostructure Interface Properties for High-Energy All-Solid-State Electrolytes

고에너지 전고체 전해질을 위한 나노스케일 이종구조 계면 특성

  • Sung Won Hwang (Department of System Semiconductor Engineering, Sangmyung University)
  • 황성원 (상명대학교 시스템반도체공학과)
  • Received : 2023.02.18
  • Accepted : 2023.03.20
  • Published : 2023.03.31

Abstract

Recently, the use of stable lithium nanostructures as substrates and electrodes for secondary batteries can be a fundamental alternative to the development of next-generation system semiconductor devices. However, lithium structures pose safety concerns by severely limiting battery life due to the growth of Li dendrites during rapid charge/discharge cycles. Also, enabling long cyclability of high-voltage oxide cathodes is a persistent challenge for all-solid-state batteries, largely because of their poor interfacial stabilities against oxide solid electrolytes. For the development of next-generation system semiconductor devices, solid electrolyte nanostructures, which are used in high-density micro-energy storage devices and avoid the instability of liquid electrolytes, can be promising alternatives for next-generation batteries. Nevertheless, poor lithium ion conductivity and structural defects at room temperature have been pointed out as limitations. In this study, a low-dimensional Graphene Oxide (GO) structure was applied to demonstrate stable operation characteristics based on Li+ ion conductivity and excellent electrochemical performance. The low-dimensional structure of GO-based solid electrolytes can provide an important strategy for stable scalable solid-state power system semiconductor applications at room temperature. The device using uncoated bare NCA delivers a low capacity of 89 mA h g-1, while the cell using GO-coated NCA delivers a high capacity of 158 mA h g−1 and a low polarization. A full Li GO-based device was fabricated to demonstrate the practicality of the modified Li structure using the Li-GO heterointerface. This study promises that the lowdimensional structure of Li-GO can be an effective approach for the stabilization of solid-state power system semiconductor architectures.

Keywords

References

  1. Evarts, E. C., "Lithium Batteries: To the Limits of Lithium", Nature, vol. 526, pp. S93-S95, 2015. https://doi.org/10.1038/526S93a
  2. Dunn, B. Kamath, H. Tarascon, J.-M., "Electrical Energy Storage for the Grid: A Battery of Choices", Science, vol. 334, pp. 928-935, 2011. https://doi.org/10.1126/science.1212741
  3. Liang, Z. Zheng, G. Liu, C. Liu, N. Li, W. Yan, K. Yao, H. Hsu, P.-C. Chu, S. Cui, Y., "Polymer NanofiberGuided Uniform Lithium Deposition for Battery Electrodes", Nano Lett., vol. 15, pp. 2910-2916, 2015. https://doi.org/10.1021/nl5046318
  4. Cheng, X. B. Peng, H. J. Huang, J. Q. Wei, F. Zhang. Q, "Dendrite-Free Nanostructured Anode: Entrapment of Lithium in a 3D Fibrous Matrix for Ultra-Stable Lithium-Sulfur Batteries", Small, vol. 10, pp. 4257-4263, 2014. https://doi.org/10.1002/smll.201401837
  5. A. Manthiram, X. Yu and S. Wang, "Lithium battery chemistries enabled by solid-state electrolytes," Nature Reviews Materials, vol. 2, no. 16103, pp. 1-16, 2017.
  6. P. G. Bruce and A. R. West, "The A-C Conductivity of Polycrystalline LISICON, Li2 + 2x Zn1 - x GeO4, and a Model for Intergranular Constriction Resistances patterns," Journal of The Electrochemical Society, vol. 130, no. 3, pp. 662-663, 1983. https://doi.org/10.1149/1.2119778
  7. A. Emly, E. Kioupakis and A. Van der Ven, "Phase Stability and Transport Mechanisms in Antiperovskite Li3OCl and Li3OBr Superionic Conductors," Chemistry of Materials, vol. 25, no. 23, pp. 4663-4670, 2013. https://doi.org/10.1021/cm4016222
  8. X. Han, Y. Gong, K. K. Fu, E. D. Wachsman and L. Hu, "Negating interfacial impedance in garnet-based solid-state Li metal batteries," Nature Materials, vol. 16, pp. 572-579, 2017. https://doi.org/10.1038/nmat4821
  9. F. Mizuno, A. Hayashi, K. Tadanaga and M. Tatsumisago, "A large area flexible array sensors using screen printing technology," Advanced Materials, vol. 17, no. 7, pp. 918-921, 2005. https://doi.org/10.1002/adma.200401286
  10. J. H. Lee, "A Study of Dynamic Properties of Graphene-Nanoribbon Memory", Journal of Semiconductor & Display Technology, vol. 13, no.2, pp.53-56, 2014.
  11. S.,Jung, Y. S.,Kim, K. H., "Effect of Post-annealing Treatment on Copper Oxide based Heterojunction Solar Cells", Journal of Semiconductor & Display Technology, vol. 19, pp.55-59, 2020.
  12. Choi, J. Roh, S,Seo, Hwa-Il., "A Study on Application of A g Nano-Dots and Silicon Nitride Film for Improving the Light Trapping in Mono-crystalline Silicon Solar Cell", Journal of Semiconductor & Display Technology, vol. 18, pp.12-17, 2019.
  13. M. Matsuo, Y. Nakamori, S.-i. Orimo, H. Maekawa and H. Takamura, "Lithium superionic conduction in lithium borohydride accompanied by structural transition," Applied Physics Letters, vol. 91, no. 22, pp. 224103-224106, 2007. https://doi.org/10.1063/1.2817934
  14. W. Liu, S. W. Lee, D. Lin, A. D. Sendek and Y. Cui, "Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires," Nature Energy, vol. 2, no. 17035, pp. 1-7, 2017.
  15. Xu, L. Gutbrod, S. R. Ma, Y. Petrossians, A. Liu, Y. Webb, R. C. Fan, J. A. Yang, Z. Xu, R.; Whalen, J. J., "Materials and Fractal Designs for 3D Multifunctional Integumentary Membranes with Capabilities in Cardiac Electrotherapy", Adv. Mater., vol. 27, pp. 1731-1737, 2015. https://doi.org/10.1002/adma.201405017
  16. Zhang, Y. Qian, J. Xu, W. Russell, S. M. Chen, X. Nasybulin, E. Bhattacharya, P. Engelhard, M. H. Mei, D. Cao, R., "Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure", Nano Lett., vol. 14, pp. 6889-6896, 2014. https://doi.org/10.1021/nl5039117
  17. Huang, C. Xiao, J. Shao, Y. Zheng, J. Bennett, W. D. Lu, D. Saraf, L. V.; Engelhard, M. Ji, L. Zhang, J. Li, X. Graff, G. L. Liu, J., "Manipulating Surface Reactions in Lithium-Sulphur Batteries Using Hybrid Anode Structures," Nat. Commun., vol. 5, pp. 3015, 2014.
  18. P. Hartmann, T. Leichtweiss, M. R. Busche, P. Adelhelm and J. Janek, "Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes," The Journal of Physical Chemistry C, vol. 117, no. 41, pp. 21064-21074, 2013. https://doi.org/10.1021/jp4051275
  19. J. A. Lewis, F. J. Q. Cortes, M. G. Boebinger, M. Chi and M. T. McDowell, "Interphase Morphology between a Solid-State Electrolyte and Lithium Controls Cell Failure" ACS Energy Letter, vol. 4, no. 2, pp. 591-599, 2019. https://doi.org/10.1021/acsenergylett.9b00093
  20. Yang, C. P. Yin, Y. X. Zhang, S. F Li, N W. Guo, Y. G., "Accommodating Lithium into 3D Current Collectors with a Submicron Skeleton Towards Long-Life Lithium Metal Anodes," Nat. Commun., vol. 6, pp. 8058, 2015.
  21. Ji, X. Liu, D.-Y. Prendiville, D. G. Zhang, Y. Liu, X. Stucky, G. D., "Spatially Heterogeneous Carbon-Fiber Papers as Surface Dendrite-Free Current Collectors for Lithium Deposition," Nano Today, vol. 7, pp. 10-20, 2012. https://doi.org/10.1016/j.nantod.2011.11.002
  22. Choudhury, S.; Mangal, R.; Agrawal, A.; Archer, L. A., "A Highly Reversible Room-Temperature Lithium Metal Battery Based on Crosslinked Hairy Nanoparticles," Nat. Commun., vol. 6, pp. 10101, 2015.
  23. Barghamadi, M. Best, A. S. Bhatt, A. I. Hollenkamp, A. F. Mahon, P. J. Musameh, M. Ruther, T., "Effect of LiNO3 Additive and Pyrrolidinium Ionic Liquid on the Solid Electrolyte Interphase in the Lithium-Sulfur Battery," J. Power Sources, vol. 295, pp. 212-220, 2015. https://doi.org/10.1016/j.jpowsour.2015.06.150
  24. I. A. Shkrob, T. W. Marin, Y. Zhu and D. P. Abraham, "Why Bis(fluorosulfonyl)imide Is a Magic Anion for Electrochemistry" The Journal of Physical Chemistry C, vol. 118, no. 34, pp. 19661-19671, 2014. https://doi.org/10.1021/jp506567p
  25. S. Xiong, K. Xie, E. Blomberg, P. Jacobsson and A. Matic, "Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium-sulfur batteries," Journal of Power Sources, vol. 252, pp. 150-155, 2014. https://doi.org/10.1016/j.jpowsour.2013.11.119
  26. Wang, J. He, Y. S. Yang, J., "Sulfur-Based Composite Cathode Materials for High-Energy Rechargeable Lithium Batteries," Adv. Mater., vol. 27, pp. 569-575, 2015. https://doi.org/10.1002/adma.201402569