DOI QR코드

DOI QR Code

Inhibition of DNMT3B and PI3K/AKT/mTOR and ERK Pathways as a Novel Mechanism of Volasertib on Hypomethylating Agent-Resistant Cells

  • Eun-Ji Choi (Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Bon-Kwan Koo (Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Eun-Hye Hur (Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Ju Hyun Moon (Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Ji Yun Kim (Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Han-Seung Park (Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Yunsuk Choi (Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kyoo-Hyung Lee (Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Jung-Hee Lee (Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Eun Kyung Choi (Asan Preclinical Evaluation Center for Cancer Therapeutics, Asan Medical Center) ;
  • Je-Hwan Lee (Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine)
  • Received : 2022.09.02
  • Accepted : 2022.10.26
  • Published : 2023.05.01

Abstract

Resistance to hypomethylating agents (HMAs) in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) is a concerning problem. Polo-like kinase 1 (PLK1) is a key cell cycle modulator and is known to be associated with an activation of the PI3K pathway, which is related to the stabilization of DNA methyltransferase 1 (DNMT1), a target of HMAs. We investigated the effects of volasertib on HMA-resistant cell lines (MOLM/AZA-1 and MOLM/DEC-5) derived from MOLM-13, and bone marrow (BM) samples obtained from patients with MDS (BM blasts >5%) or AML evolved from MDS (MDS/AML). Volasertib effectively inhibited the proliferation of HMA-resistant cells with suppression of DNMTs and PI3K/AKT/mTOR and ERK pathways. Volasertib also showed significant inhibitory effects against primary BM cells from patients with MDS or MDS/AML, and the effects of volasertib inversely correlated with DNMT3B expression. The DNMT3B-overexpressed AML cells showed primary resistance to volasertib treatment. Our data suggest that volasertib has a potential role in overcoming HMA resistance in patients with MDS and MDS/AML by suppressing the expression of DNMT3 enzymes and PI3K/AKT/mTOR and ERK pathways. We also found that DNMT3B overexpression might be associated with resistance to volasertib.

Keywords

Acknowledgement

This research was supported by a grant of the Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea (Grant number: 2021IP0076) and the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant number: HI15C0972).

References

  1. Adachi, Y., Ishikawa, Y. and Kiyoi, H. (2017) Identification of volasertib-resistant mechanism and evaluation of combination effects with volasertib and other agents on acute myeloid leukemia. Oncotarget 8, 78452.
  2. Beishline, K. and Azizkhan-Clifford, J. (2014) Interplay between the cell cycle and double-strand break response in mammalian cells. Methods Mol. Biol. 1170, 41-59. https://doi.org/10.1007/978-1-4939-0888-2_3
  3. Bhola, N. E., Jansen, V. M., Bafna, S., Giltnane, J. M., Balko, J. M., Estrada, M. V., Meszoely, I., Mayer, I., Abramson, V., Ye, F., Sanders, M., Dugger, T. C., Allen, E. V. and Arteaga, C. L. (2015) Kinomewide functional screen identifies role of PLK1 in hormone-independent, ER-positive breast cancer. Cancer Res. 75, 405-414. https://doi.org/10.1158/0008-5472.CAN-14-2475
  4. Cai, X. P., Chen, L. D., Song, H. B., Zhang, C. X., Yuan, Z. W. and Xiang, Z. X. (2016) PLK1 promotes epithelial-mesenchymal transition and metastasis of gastric carcinoma cells. Am. J. Transl. Res. 8, 4172-4183.
  5. Chan, T. A., Hwang, P. M., Hermeking, H., Kinzler, K. W. and Vogelstein, B. (2000) Cooperative effects of genes controlling the G2/M checkpoint. Genes Dev. 14, 1584-1588. https://doi.org/10.1101/gad.14.13.1584
  6. Chang, H.-Y., Shih, M.-H., Huang, H.-C., Tsai, S.-R., Juan, H.-F. and Lee, S.-C. (2013) Middle infrared radiation induces G2/M cell cycle arrest in A549 lung cancer cells. PLoS One 8, e54117.
  7. Dohner, H., Lubbert, M., Fiedler, W., Fouillard, L., Haaland, A., Brandwein, J. M., Lepretre, S., Reman, O., Turlure, P., Ottmann, O. G., Muller-Tidow, C., Kramer, A., Raffoux, E., Dohner, K., Schlenk, R. F., Voss, F., Taube, T., Fritsch, H. and Maertens, J. (2014) Randomized, phase 2 trial of low-dose cytarabine with or without volasertib in AML patients not suitable for induction therapy. Blood 124, 1426-1433. https://doi.org/10.1182/blood-2014-03-560557
  8. Dohner, H., Symeonidis, A., Deeren, D., Demeter, J., Sanz, M. A., Anagnostopoulos, A., Esteve, J., Fiedler, W., Porkka, K., Kim, H.-J., Lee, J. H., Usuki, K., D'Ardia, S., Won Jung, C., Salamero, O., Horst, H. A., Recher, C., Rousselot, P., Sandhu, I., Theunissen, K., Thol, F., Dohner, K., Teleanu, V., DeAngelo, D. J., Naoe, T., Sekeres, M. A., Belsack, V., Ge, M., Taube, T. and Ottmann, O. G. (2021) Adjunctive volasertib in patients with acute myeloid leukemia not eligible for standard induction therapy: a randomized, phase 3 trial. Hemasphere 5, e617.
  9. Esteve, P.-O., Chang, Y., Samaranayake, M., Upadhyay, A. K., Horton, J. R., Feehery, G. R., Cheng, X. and Pradhan, S. (2011) A methylation and phosphorylation switch between an adjacent lysine and serine determines human DNMT1 stability. Nat. Struct. Mol. Biol. 18, 42-48. https://doi.org/10.1038/nsmb.1939
  10. Estey, E. (2013) Epigenetics in clinical practice: the examples of azacitidine and decitabine in myelodysplasia and acute myeloid leukemia. Leukemia 27, 1803-1812. https://doi.org/10.1038/leu.2013.173
  11. Gjertsen, B. T. and Schoffski, P. (2015) Discovery and development of the Polo-like kinase inhibitor volasertib in cancer therapy. Leukemia 29, 11-19. https://doi.org/10.1038/leu.2014.222
  12. Golsteyn, R. M., Schultz, S. J., Bartek, J., Ziemiecki, A., Ried, T. and Nigg, E. A. (1994) Cell cycle analysis and chromosomal localization of human Plk1, a putative homologue of the mitotic kinases Drosophila polo and Saccharomyces cerevisiae Cdc5. J. Cell Sci. 107, 1509-1517. https://doi.org/10.1242/jcs.107.6.1509
  13. Goroshchuk, O., Kolosenko, I., Vidarsdottir, L., Azimi, A. and PalmApergi, C. (2019) Polo-like kinases and acute leukemia. Oncogene 38, 1-16. https://doi.org/10.1038/s41388-018-0443-5
  14. Hagemann, S., Kuck, D., Stresemann, C., Prinz, F., Brueckner, B., Mund, C., Mumberg, D. and Sommer, A. (2012) Antiproliferative effects of DNA methyltransferase 3B depletion are not associated with DNA demethylation. PLoS One 7, e36125.
  15. Hamanaka, R., Smith, M. R., O'Connor, P. M., Maloid, S., Mihalic, K., Spivak, J. L., Longo, D. L. and Ferris, D. K. (1995) Polo-like kinase is a cell cycle-regulated kinase activated during mitosis. J. Biol. Chem. 270, 21086-21091. https://doi.org/10.1074/jbc.270.36.21086
  16. Hur, E.-H., Jung, S.-H., Goo, B.-K., Moon, J., Choi, Y., Choi, D. R., Chung, Y.-J. and Lee, J.-H. (2017) Establishment and characterization of hypomethylating agent-resistant cell lines, MOLM/AZA-1 and MOLM/DEC-5. Oncotarget 8, 11748-11762. https://doi.org/10.18632/oncotarget.14342
  17. Jin, S., Tong, T., Fan, W., Fan, F., Antinore, M. J., Zhu, X., Mazzacurati, L., Li, X., Petrik, K. L., Rajasekaran, B., Wu, M. and Zhan, Q. (2002) GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity. Oncogene 21, 8696-8704. https://doi.org/10.1038/sj.onc.1206034
  18. Kadia, T. M., Jabbour, E. and Kantarjian, H. (2011) Failure of hypomethylating agent-based therapy in myelodysplastic syndromes. Semin. Oncol. 38, 682-692. https://doi.org/10.1053/j.seminoncol.2011.04.011
  19. Kasahara, K., Kawakami, Y., Kiyono, T., Yonemura, S., Kawamura, Y., Era, S., Matsuzaki, F., Goshima, N. and Inagaki, M. (2014) Ubiquitin-proteasome system controls ciliogenesis at the initial step of axoneme extension. Nat. Commun. 5, 5081.
  20. Lee, J. H., Choi, Y., Kim, S. D., Kim, D. Y., Lee, J. H., Lee, K. H., Lee, S. M., Lee, W. S. and Joo, Y. D. (2015) Clinical outcome after failure of hypomethylating therapy for myelodysplastic syndrome. Eur. J. Haematol. 94, 546-553. https://doi.org/10.1111/ejh.12469
  21. Li, Z., Li, J., Bi, P., Lu, Y., Burcham, G., Elzey, B. D., Ratliff, T., Konieczny, S. F., Ahmad, N., Kuang, S. and Liu, X. (2014) Plk1 phosphorylation of PTEN causes a tumor-promoting metabolic state. Mol. Cell. Biol. 34, 3642-3661. https://doi.org/10.1128/MCB.00814-14
  22. Liu, X. and Erikson, R. L. (2003) Polo-like kinase (Plk) 1 depletion induces apoptosis in cancer cells. Proc. Natl. Acad. Sci. U. S. A. 100, 5789-5794. https://doi.org/10.1073/pnas.1031523100
  23. Mao, Y., Xi, L., Li, Q., Cai, Z., Lai, Y., Zhang, X. and Yu, C. (2016) Regulation of cell apoptosis and proliferation in pancreatic cancer through PI3K/Akt pathway via Polo-like kinase 1. Oncol. Rep. 36, 49-56. https://doi.org/10.3892/or.2016.4820
  24. Munch, C., Dragoi, D., Frey, A.-V., Thurig, K., Lubbert, M., Wasch, R., Bogatyreva, L., Hauschke, D., Lassmann, S., Werner, M. and May, A. M. (2015) Therapeutic polo-like kinase 1 inhibition results in mitotic arrest and subsequent cell death of blasts in the bone marrow of AML patients and has similar effects in non-neoplastic cell lines. Leuk. Res. 39, 462-470. https://doi.org/10.1016/j.leukres.2015.01.007
  25. Prebet, T., Gore, S. D., Thepot, S., Esterni, B., Quesnel, B., Beyne Rauzy, O., Dreyfus, F., Gardin, C., Fenaux, P. and Vey, N. (2012) Outcome of acute myeloid leukaemia following myelodysplastic syndrome after azacitidine treatment failure. Br. J. Haematol. 157, 764-766. https://doi.org/10.1111/j.1365-2141.2012.09076.x
  26. Qin, T., Jelinek, J., Si, J., Shu, J. and Issa, J.-P. J. (2009) Mechanisms of resistance to 5-aza-2'-deoxycytidine in human cancer cell lines. Blood 113, 659-667. https://doi.org/10.1182/blood-2008-02-140038
  27. Renner, A. G., Dos Santos, C., Recher, C., Bailly, C., Creancier, L., Kruczynski, A., Payrastre, B. and Manenti, S. (2009) Polo-like kinase 1 is overexpressed in acute myeloid leukemia and its inhibition preferentially targets the proliferation of leukemic cells. Blood 114, 659-662. https://doi.org/10.1182/blood-2008-12-195867
  28. Rudolph, D., Impagnatiello, M. A., Blaukopf, C., Sommer, C., Gerlich, D. W., Roth, M., Tontsch-Grunt, U., Wernitznig, A., Savarese, F., Hofmann, M. H., Albrecht, C., Geiselmann, L., Reschke, M., Garin-Chesa, P., Zuber, J., Moll, J., Adolf, G. R. and Kraut, N. (2015) Efficacy and mechanism of action of volasertib, a potent and selective inhibitor of Polo-like kinases, in preclinical models of acute myeloid leukemia. J. Pharmacol. Exp. Ther. 352, 579-589. Rudolph, D., Steegmaier, M., Hoffmann, M., Grauert, M., Baum, https://doi.org/10.1124/jpet.114.221150
  29. Quant, J., Haslinger, C., Garin-Chesa, P. and Adolf, G. R. (2009) BI 6727, a Polo-like kinase inhibitor with improved pharmacokinetic profile and broad antitumor activity. Clin. Cancer Res. 15, 3094-3102. https://doi.org/10.1158/1078-0432.CCR-08-2445
  30. Simo-Riudalbas, L., Melo, S. A. and Esteller, M. (2011) DNMT3B gene amplification predicts resistance to DNA demethylating drugs. Genes Chromosomes Cancer 50, 527-534. https://doi.org/10.1002/gcc.20877
  31. Sparta, A. M., Bressanin, D., Chiarini, F., Lonetti, A., Cappellini, A., Evangelisti, C., Evangelisti, C., Melchionda, F., Pession, A., Bertaina, A., Locatelli, F., McCubrey, J. A. and Martelli, A. M. (2014) Therapeutic targeting of Polo-like kinase-1 and Aurora kinases in T-cell acute lymphoblastic leukemia. Cell Cycle 13, 2237-2247. https://doi.org/10.4161/cc.29267
  32. Sripayap, P., Nagai, T., Uesawa, M., Kobayashi, H., Tsukahara, T., Ohmine, K., Muroi, K. and Ozawa, K. (2014) Mechanisms of resistance to azacitidine in human leukemia cell lines. Exp. Hematol. 42, 294-306.E2. https://doi.org/10.1016/j.exphem.2013.12.004
  33. Subramaniam, D., Thombre, R., Dhar, A. and Anant, S. (2014) DNA methyltransferases: a novel target for prevention and therapy. Front. Oncol. 4, 80.
  34. Sun, L., Zhao, H., Xu, Z., Liu, Q., Liang, Y., Wang, L., Cai, X., Zhang, L., Hu, L., Wang, G. and Zha, X. (2007) Phosphatidylinositol 3-kinase/protein kinase B pathway stabilizes DNA methyltransferase I protein and maintains DNA methylation. Cell. Signal. 19, 2255-2263. https://doi.org/10.1016/j.cellsig.2007.06.014
  35. Van den Bossche, J., Lardon, F., Deschoolmeester, V., De Pauw, I., Vermorken, J., Specenier, P., Pauwels, P., Peeters, M. and Wouters, A. (2016) Spotlight on volasertib: preclinical and clinical evaluation of a promising Plk1 inhibitor. Med. Res. Rev. 36, 749-786. https://doi.org/10.1002/med.21392
  36. Vassilev, L. T. (2006) Cell cycle synchronization at the G2/M phase border by reversible inhibition of CDK1. Cell Cycle 5, 2555-2556. https://doi.org/10.4161/cc.5.22.3463
  37. Wu, J., Ivanov, A. I., Fisher, P. B. and Fu, Z. (2016) Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling. Elife 5, e10734.
  38. Wu, K., Wang, W., Chen, H., Gao, W. and Yu, C. (2019) Insulin promotes proliferation of pancreatic ductal epithelial cells by increasing expression of PLK1 through PI3K/AKT and NF-B pathway. Biochem. Biophys. Res. Commun. 509, 925-930.