DOI QR코드

DOI QR Code

Comparative Analysis of Antioxidant, Anti Aging and Phenolic Compounds of Different Solvent Extracts from Saccharina japonica and Costaria costata

추출용매에 따른 쇠미역과 다시마의 항산화, 항노화 활성과 페놀화합물 비교분석

  • 이현화 (조선대학교 생명과학과) ;
  • 김진솔 (조선대학교 생명과학과) ;
  • 정준한 (조선대학교 생명과학과) ;
  • 김춘성 (조선대학교 구강생화학교실) ;
  • 이숙영 (조선대학교 해양생물연구교육센터)
  • Received : 2022.09.14
  • Accepted : 2023.01.26
  • Published : 2023.04.01

Abstract

This study analyzed the polyphenol, flavonoid contents, antioxidant activity, anti-aging activity and phenol component contents of Saccharina japonica (SJ), Costaria costata (CC) extracts with hot water, 95% methanol, 95% prethanol for investigating possible utilization of SJ and CC extracts. The result revealed that the SJ and CC methanol extracts showed the highest polyphenol and flavonoid contents, 4.63 mg TAN/g, and 4.19 mg QUE/g respectively. Also, the SJ and CC methanol extracts showed higher antioxidant activity than prethanol and hot water extracts, whereas the ABTS radical scavenging activities were the highest in prethanol extracts (IC50 = 15.4, 10.3 ㎍/µL). In anti-aging activity for evaluating the anti-wrinkle activity and skin whitening activity, the CC methanol extracts had high collagenase inhibitory activity (88.3%), and the SJ prethanol extracts showed higher elastase inhibitory activity (19.0%) compared to other extracts. Then the tyrosinase inhibitory activity was significantly higher in the SJ and CC methanol extracts (41.8, 30.3%, respectively), whereas prethanol extracts were the lowest. To identify the phenol component contents of SJ and CC extracts, 4-hydroxybenzoic acid, naringenin, naringin and nicotinic acid were measured using LC-MS/MS. As a result, the phenol contents were the highest in SJ methanol extract (4-hydroxybenzoic acid), SJ and CC prethanol extract (naringin and naringenin) and CC prethanol extract (nicotinic acid). Lastly, the antioxidant activity of SJ and CC showed high correlations with polyphenol and flavonoid contents (R = -0.946~0.883). These results suggest that prethanol or methanol extracts of SJ and CC have higher antioxidant activities, anti-aging activity and the potential to be used as material for health functional food and cosmetics.

본 연구에서는 추출용매에 완도산 다시마와 쇠미역의 항산화, 항노화 활성을 살펴보고 페놀화합물 함량을 비교 분석하였다. 먼저 다시마와 쇠미역 추출물의 폴리페놀, 플라보노이드 함량은 각각 다시마 메탄올추출물(4.64 mgTAN/g), 쇠미역 메탄올추출물(4.19 mgQUE/g)이 다른 추출물에 비해 높은 함량을 보였다. 또한 다시마와 쇠미역의 DPPH 라디칼 소거능은 모두 열수 추출물에서 가장 낮은 활성을 보였으며 쇠미역 주정추출물에서 높은 DPPH 라디칼 소거능(IC50 = 42.5 ㎍/µL)을 나타냈다. ABTS 라디칼 소거능과 FRAP 활성 측정 결과 다시마와 쇠미역 모두 열수보다 주정과 메탄올 추출물에서 높은 활성을 보였으며, 특히 쇠미역이 다시마보다 높은 ABTS 라디칼 소거능과 FRAP 활성을 나타냈다. 또한 다시마와 쇠미역 추출물의 SOD, CAT, APX 활성은 열수, 주정 추출물보다 메탄올 추출물에서, 그리고 쇠미역보다 다시마에서 높은 SOD, CAT, APX 활성이 확인되어 다시마 메탄올 추출물에서 뛰어난 항산화 효소 활성을 보였다. 그 다음으로 Collagenase, elastase 저해 활성은 쇠미역 메탄올 추출물과 다시마 주정추출물에서 각각 88.3, 19.0%의 우수한 collagenase 및 elastase 저해활성을 보였다. 미백 효과를 평가하기 위해 tyrosinase 저해 활성을 측정한 결과에서는 다시마와 쇠미역 모두 메탄올 추출물에서 각각 41.8, 30.3%로 나타나 다른 추출용매에 비해 높은 tyrosinase 저해활성이 측정되었으며, 주로 쇠미역보다 다시마에서 우수한 tyrosinase저해활성이 관찰되었다. 마지막으로 추출용매에 따른 다시마와 쇠미역 추출물의 페놀화합물 함량(4-hydroxybenzoic acid, naringenin, naringin, nicotinic acid) 분석 결과 4-hydroxybenzoic acid 함량은 다시마 메탄올 추출물(8.25 ㎍/g), naringenin과 naringin 함량은 각각 쇠미역 주정추출물(0.58 ㎍/g), 다시마 주정추출물(661.66 ㎍/g), 마지막으로 nicotinic acid 함량은 쇠미역 주정 추출물에서 18.06 ㎍/g으로 가장 높은 함량이 측정되었다. 본 실험 결과 다시마와 쇠미역은 메탄올과 주정 추출물에서 열수 추출물에 비해 높은 폴리페놀 함량, 항산화 및 항노화 활성과 naringenin, naringin, nicotinic acid 함량이 나타났으며, 다시마와 쇠미역에 포함된 다양한 폴리페놀과 플라보노이드 물질이 다시마와 쇠미역의 항산화활성에 관여한 것으로 확인되어 다시마와 쇠미역 주정 및 메탄올 추출물의 추출조건을 확립할 수 있었고, 이를 이용한 건강 기능성 식품 소재로 활용과 화장품 소재개발에 대한 가능성이 증가 될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

이 논문은 2021년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(20210656, 빅데이터 기반 해양 바이러스 제어 및 마린바이오틱스 개발).

References

  1. Aebi, H. 1984. Catalase in vitro. Methods Enzymol. 105:121-126.  https://doi.org/10.1016/S0076-6879(84)05016-3
  2. Aguilera, J., A. Dummermuth, U. Karsten, R. Schriek and C. Wiencke. 2002. Enzymatic defences against photooxidative stress induced by ultraviolet radiation in arctic marine macroalgae. Polar Biol. 25(6):432-441.  https://doi.org/10.1007/s00300-002-0362-2
  3. Al-Hazzani, A.A. and A.A. Alshatwi. 2011. Catechin hydrate inhibits proliferation and mediates apoptosis of SiHa human cervical cancer cells. Food. Chem. Toxicol. 49(12):3281-3286.  https://doi.org/10.1016/j.fct.2011.09.023
  4. Aminina, N., T. Vishnevskaya, E. Karaulova, N. Epur and E. Yakush. 2020a. Prospects for the use of commercial and potentially commercial brown algae of the far eastern seas as a source of polyphenols. Russ. J. Mar. Biol. 46(1):34-41.  https://doi.org/10.1134/S1063074020010022
  5. Aminina, N.M., E.P. Karaulova, T.I. Vishnevskaya, E.V. Yakush, Y.K. Kim, K.H. Nam and K.T. Son. 2020b. Characteristics of polyphenolic content in brown algae of the pacific coast of russia. Molecules 25(17):3909. 
  6. Andrade, J.E. and J.R. Burgess. 2007. Effect of the citrus flavanone naringenin on oxidative stress in rats. J. Agr. Food. Chem. 55(6):2142-2148.  https://doi.org/10.1021/jf061714h
  7. Baek, S.H., H.J. Lee, C.H. Lee, T.J. Nam and S.G. Lee. 2019. Change of fucoxanthin and total antioxidant capacities of Saccharina japonica during the drying process. Korean J. Food Sci. Technol. 51(6):524-530. 
  8. Bangmei, X. and I.A. Abbott. 1987. Edible seaweeds of china and their place in the chinese diet. Eco. Bot. 41(3):341-353.  https://doi.org/10.1007/BF02859049
  9. Baweja, P. and D. Sahoo. 2015. Classification of Algae. In Sahoo, D. and J. Seckbach (eds.), The Algae World, Springer, Dordrecht, Netherlands. pp. 31-55. 
  10. Beauchamp, C. and I. Fridovich. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44(1):276-287.  https://doi.org/10.1016/0003-2697(71)90370-8
  11. Ben Abdallah Kolsi, R., A. Ben Gara, R. Chaaben, A. El Feki, F. Paolo Patti, L. El Feki and K. Belghith. 2015. Anti-obesity and lipid lowering effects of Cymodocea nodosa sulphated polysaccharide on high cholesterol-fed-rats. Arch. Physiol. Biochem. 121(5):210-217.  https://doi.org/10.3109/13813455.2015.1105266
  12. Bischof, K. and R. Rautenberger. 2012. Seaweed Responses to Environmental Stress: Reactive Oxygen and Antioxidative Strategies. In: Wiencke, C. and K. Bischof (eds.), Springer, Heidelberg, Berlin, Germany, pp. 109-132. 
  13. Blois, M.S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181(4617):1199-1200.  https://doi.org/10.1038/1811199a0
  14. Cannell, R.J., S.J. Kellam, A.M. Owsianka and J.M. Walker. 1988. Results of a large scale screen of microalgae for the production of protease inhibitors. J. Med. Plants Res. 54(01):10-14.  https://doi.org/10.1055/s-2006-962319
  15. Castejón, N., K.A. Thorarinsdottir, R. Einarsdottir, K. Kristbergsson and G. Marteinsdottir. 2021. Exploring the potential of icelandic seaweeds extracts produced by aqueous pulsed electric fields-assisted extraction for cosmetic applications. Mar. Drugs. 19(12):662. 
  16. Choi, Y.S., J.H. Choi, D.J. Han, H.Y. Kim, H.W. Kim, M.A. Lee, H.J. Chung and C.J. Kim. 2012. Effects of Laminaria japonica on the physico-chemical and sensory characteristics of reduced-fat pork patties. Meat. Sci. 91(1):1-7.  https://doi.org/10.1016/j.meatsci.2011.11.011
  17. Cornish, M.L. and D.J. Garbary. 2010. Antioxidants from macroalgae: potential applications in human health and nutrition. Algae 25(4):155-171.  https://doi.org/10.4490/algae.2010.25.4.155
  18. Dang, T.T., M.C. Bowyer, I.A. Van Altena and C.J. Scarlett. 2018. Comparison of chemical profile and antioxidant properties of the brown algae. Int. J. Food Sci. Tech. 53(1):174-181.  https://doi.org/10.1111/ijfs.13571
  19. Delaney, A., K. Frangoudes and S.A. Ii. 2016. Society and Seaweed: Understanding the Past and Present. Academic Press, MA (USA). pp. 7-40. 
  20. Dinh, T.V., P.S. Saravana, H.C. Woo and B.S. Chun. 2018. Ionic liquid-assisted subcritical water enhances the extraction of phenolics from brown seaweed and its antioxidant activity. Sep. Purif. Technol. 196:287-299.  https://doi.org/10.1016/j.seppur.2017.06.009
  21. FAO. 2020. The State of World Fisheries and Aquaculture 2020 (Sustainability in Action). Rome, Italy. p. 32. 
  22. Farvin, K.S. and C. Jacobsen. 2013. Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food. Chemistry 138(2-3):1670-1681.  https://doi.org/10.1016/j.foodchem.2012.10.078
  23. Fatma, C., O. Yilmaz, F. Durucan and N.S. Ozdemir. 2015. Biochemical components of three marine macroalgae (Padina pavonica, Ulva lactuca and Taonia atomaria) from the levantine sea coast of antalya, Turkey. J. Biol. Env. Sci. 6: 401-411. 
  24. Folin, O. and W. Denis. 1912. On phosphor-tungstic-phosphomolybdic compounds as color reagents. J. Biol. Chem. 12(2):239-243.  https://doi.org/10.1016/S0021-9258(18)88697-5
  25. Ganesan, A.R., U. Tiwari and G. Rajauria. 2019. Seaweed nutraceuticals and their therapeutic role in disease prevention. Food Sci. Hum. Wellness 8(3):252-263.  https://doi.org/10.1016/j.fshw.2019.08.001
  26. Gehring, W. 2004. Nicotinic acid/niacinamide and the skin. J. Cosmet. Dermatol. 3(2):88-93.  https://doi.org/10.1111/j.1473-2130.2004.00115.x
  27. Guo, L., A. Tuyama, C. Butkinaree, K. Chung, M.D. O'Donnell, E. Montenont and E.A. Fisher. 2013. Niacin (vitamin B3, nicotinic acid) decreases VLDLA-polipoprotein B secretion and reduces hepatic and blood lipid concentrations: roles of niacin metabolism and autophagy degradation. FASEB. J. 27(S1):361.1-361.4.  https://doi.org/10.1096/fj.13-0101ufm
  28. Haijin, M., J. Xiaolu and G. Huashi. 2003. A κ-carrageenan derived oligosaccharide prepared by enzymatic degradation containing anti-tumor activity. J. Appl. Phycol. 15(4):297-303.  https://doi.org/10.1023/A:1025103530534
  29. Hwang, H.J., S.Y. Lee, S.M. Kim and S.B. Lee. 2011. Fermentation of seaweed sugars by Lactobacillus species and the potential of seaweed as a biomass feedstock. Biotechnol. Bioprocess Eng. 16(6):1231-1239.  https://doi.org/10.1007/s12257-011-0278-1
  30. Hwang, J.Y., J.S. Jang, D.G. Ryu, K.T. Kim, M.K. Huh and S.H. Eom. 2019. Quality characteristics of the myungranjeot with Saccharina japonica water extract fermented by lactic acid bacteria. Korean J. Fish. Aquat Sci. 52(3):193-198 (in Korean). 
  31. Ibraheem, I.B.M., N. Abdel-Raouf, H.M. Mohamed, R. Fassihy and S. Hamed. 2017. Impact of the microbial suppression by using the brown alga Dictyota dichotoma extract. Egypt. J. Bot. 57(7th International Conf.):205-214.  https://doi.org/10.21608/ejbo.2017.912.1072
  32. Jeong, Y.U. and Y.J. Park. 2018. Studies on Antioxidant, Anti-Inflammation and collagenase inhibitory effects of extracts from plants of the Salix genus. J. Soc. Cosmet. Scientists Korea 44(3):335-341 (in Korean). 
  33. Kang, S.Y., E. Kim, I. Kang, M. Lee and Y. Lee. 2018. Antidiabetic effects and anti-inflammatory effects of Laminaria japonica and Hizikia fusiforme in skeletal muscle: in vitro and in vivo model. Nutrients 10(4):491. 
  34. Kim, H.J., S.I. Kim and Y.S. Han. 2008. Effects of sea tangle extract and sea tangle yogurt on constipation relief. Korean J. Food. Cook. Science 24(1):59-67 (in Korean). 
  35. Kim, J.H., D.S. Lee, C.W. Lim, H.Y. Park and J.H. Park. 2002. Antibacterial activity of sea-mustard, Laminaria japonica extracts on the cariogenic bacteria, Streptococcus mutans. Korean J. Fish. Aquat Sci. 35(2):191-195 (in Korean).  https://doi.org/10.5657/kfas.2002.35.2.191
  36. Kim, K.A., T.H. Oh and S.H. Chun. 2021. Antioxidative activities and protective effects on alcohol-induced oxidative stress in the human hepatic HepG2 cells of Undaria pinnatifida and Costaria costata extracts. J. Mar. Life Sci. 6(2):66-72 (in Korean). 
  37. Kim, M. and S. Park. 2019. Antioxidant and anti-bacterial effect of Costaria Costata (C. Agardh) Saunders extracts. Korean J. Community Living Sci. 30(4):509-516 (in Korean).  https://doi.org/10.7856/kjcls.2019.30.4.509
  38. Kim, M.J., Y.T. Jeong, B.S. Hwang, Y. Hwang, D.W. Jeon and Y.T. Oh. 2022. Anti-melanogenic activities of Ranunculus chinensis Bunge via ERK1/2-mediated MITF downregulation. Korean J. Plant Res. 35(6):704-712 (in Korean). 
  39. Kim, S.J., G.S. Lee, S.H. Moh, J.B. Park, C.K. Auh, Y.J. Chung, T.K. Ryu and T.K. Lee. 2013. Phenolic contents and antioxidant activities of six edible seaweeds. J. Korea Acad-Ind. Coop. Soc. 14(6):3081-3088 (in Korean).  https://doi.org/10.5762/KAIS.2013.14.6.3081
  40. Kim, Y.J. and H. Uyama. 2005. Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell. Mol. Life. Sci. 62(15):1707-1723.  https://doi.org/10.1007/s00018-005-5054-y
  41. Kim, Y.J. and J.S. Lee. 2020. Microbiological characteristics of whitening tyrosinase inhibitor-producing wild yeasts, Saccharomyces cerevisiae WJSL0191 and Papiliotrema laurentii ON30 and production. Korean J. Mycol. 48(3):285-296 (in Korean). 
  42. Kolb, N., L. Vallorani, N. Milanovic and V. Stocchi. 2004. Evaluation of marine algae wakame (Undaria pinnatifida) and kombu (Laminaria digitata japonica) as food supplements. Food. Technol. Biotech. 42(1):57-62. 
  43. Kumari, S., K. Singh, P. Kushwaha and K.S. Kumar. 2022. Functional and niochemical properties of some economically important edible seaweeds. Curr. Res. Nutr. Food Sci. 10(2):802-816. https://doi.org/10.12944/CRNFSJ.10.2.32
  44. Lee, C.H., Y.N. Park and S.G. Lee. 2020. Analysis and comparison of bioactive compounds and total 1. antioxidant capabilities of Korean brown algae. Korean J. Food Sci. Technol. 52(1):54-59 (in Korean). 
  45. Lee, J.D., H.B. Hyun, H.J. Hyeon, E.B. Jang, M.-H. Ko, W.-J. Yoon, Y. M. Han, Y.-H. Jung, H. Choi, E.G. O and D. Oh. 2021. Mass proliferation of Hibiscus hamabo adventitious root in an air-lift bioreactor and the antioxidant and whitening activity of the extract. Korean J. Plant Res. 35(4):435-444 (in Korean). 
  46. Liu, X., W. Yuan and X. Meng. 2017. Extraction and quantification of phlorotannins from edible brown algae. J. ASABE. 60(1):265-271.  https://doi.org/10.13031/trans.12023
  47. Lozano Muñoz, I. and N.F. Diaz. 2020. Minerals in edible seaweed: health benefits and food safety issues. Crit. Rev. Food Sci. 62(6):1592-1607.  https://doi.org/10.1080/10408398.2020.1844637
  48. Machu, L., L. Misurcova, J. Vavra Ambrozova, J. Orsavova, J. Mlcek, J. Sochor and T. Jurikova. 2015. Phenolic content and antioxidant capacity in algal food products. Molecules 20(1):1118-1133.  https://doi.org/10.3390/molecules20011118
  49. Mekinic, G.I., D. Skroza, V. Simat, I. Hamed, M. Cagalj and Z. Popovic Perkovic. 2019. Phenolic content of brown algae (Pheophyceae) species: extraction, identification, and quantification. Biomolecules 9(6):244. 
  50. Moon, H.J., K.S. Park, M.J. Ku, M.S. Lee, S.H. Jeong, T.I. Imbs, T.N. Zvyagintseva, S.P. Ermakova and Y.H. Lee. 2009. Effect of Costaria costata fucoidan on expression of matrix metalloproteinase-1 promoter, mRNA, and protein. J. Nat. Prod. 72(10):1731-1734.  https://doi.org/10.1021/np800797v
  51. Moreno, M.I.N., M.I. Isla, A.R. Sampietro and M.A. Vattuone. 2000. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol. 71(1-2):109-114.  https://doi.org/10.1016/S0378-8741(99)00189-0
  52. Na, Y.J., D.V. Jeon, S.J. Han, C.A.O. Maranguy, D.S. An, H.K. Cha, J.B. Lee, J.H. Yang, H.W. Lee and H.G. Choi. 2016. Crossed effects of light and temperature on the growth and maturation of gametophytes in Costaria costata and Undaria pinnatifida. Korean J. Fish. Aquat Sci. 49(2):190-197 (in Korean).  https://doi.org/10.5657/KFAS.2016.0190
  53. Naidoo, L., N. Khoza and N.C. Dlova. 2016. A fairer face, a fairer tomorrow? a review of skin lighteners. Cosmetics 3(3):33. 
  54. Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant. Cell. Physiol. 22(5):867-880. 
  55. Nowak, A., K. Florkowska, J. Zielonka-Brzezicka, W. Duchnik, A. Muzykiewicz and A. Klimowicz. 2021. The effects of extraction techniques on the antioxidant potential of extracts of different parts of milk thistle (Silybum marianum L.). Acta Sci. Pol. Technol. Aliment. 20(1):37-46.  https://doi.org/10.17306/J.AFS.2021.0817
  56. Pak, W.M., K.B.W.R. Kim, M.J. Kim, J.H. Park, N.Y. Bae, S.H. Park and D.H. Ahn. 2016. Anti-melanogenesis and antiwrinkle effects of Sargassum micracanthum extracts. Microbiol. Biotechnol. Lett. 44(1):19-25 (in Korean).  https://doi.org/10.4014/mbl.1510.10002
  57. Park, S.K., J.S. Heo, B.Y. Kim, J.N. Song, G.Y. Lim, H.N. Kim and H.G. Choi. 2011. Comparison on the growth of Costaria costata and Undaria pinnatifida sporophytes in culture and their field populations. Korean J. Fish. Aquat Sci. 44(1):71-77 (in Korean)  https://doi.org/10.5657/kfas.2011.44.1.071
  58. Ribeiro, I.A., J. Rocha, B. Sepodes, H. Mota-Filipe and M.H. Ribeiro. 2008. Effect of naringin enzymatic hydrolysis towards naringenin on the anti-inflammatory activity of both compounds. J. Mol. Catal. B Enzym. 52:13-18.  https://doi.org/10.1016/j.molcatb.2007.10.011
  59. Rushdi, M.I., I.A. Abdel-Rahman, H. Saber, E.Z. Attia and U.R. Abdelmohsen. 2022. The natural products and pharmacological biodiversity of brown algae from the genus Dictyopteris. J. Mex. Chem. Soc. 66(1):154-180.  https://doi.org/10.29356/jmcs.v66i1.1639
  60. Ryzhik, I.V., М.P. Кlindukh and Е.О. Dobychina. 2021. The B-group vitamins in the red alga Palmaria palmatа (Barents Sea): Composition, seasonal changes and influence of abiotic factors. Algal Res. 59:102473. 
  61. Seo, Y.R., S.H. Kim and H.S. Song. 2018. Change in the quality of doenjang with Added Saccharina japonica powder fermented by lactic acid bacteria. Korean J. Fish. Aquat Sci. 51(5):477-490 (in Korean). 
  62. Shin, H.C., H.J. Hwang, K.J. Kang and B.H. Lee. 2006. An antioxidative and antiinflammatory agent for potential treatment of osteoarthritis from Ecklonia cava. Arch. Pharm Res. 29(2):165-171.  https://doi.org/10.1007/BF02974279
  63. Shin, S.C., M.W. Ahn, J.S. Lee, Y.S. Kim and K.P. Park. 2013. Extraction of fucoxanthin from Undaria pinnatifida and stability of fucoxanthin. Korean Chem. Eng. Res. 51(1):42-46 (in Korean).  https://doi.org/10.9713/kcer.2013.51.1.42
  64. Tabakaeva, O. and A. Tabakaev. 2016. Amino acids from potentially commercial far-east brown algae Costaria costata and Undaria pinnatifida. Chem. Nat. Compd. 52(2):376-378.  https://doi.org/10.1007/s10600-016-1651-2
  65. Tanna, B. and A. Mishra. 2019. Nutraceutical potential of seaweed polysaccharides: structure, bioactivity, safety, and toxicity. Compr. Rev. Food Sci. Food Saf. 18(3):817-831.  https://doi.org/10.1111/1541-4337.12441
  66. Yagi, A., T. Kanbara and N. Morinobu. 1987. Inhibition of Mushroom-Tyrosinase by Aloe Extract. Planta Med. 53(06): 515-517.  https://doi.org/10.1055/s-2006-962798
  67. Yao, Y., H. Xiang, L. You, C. Cui, D. Sun-Waterhouse and M. Zhao. 2017. Hypolipidaemic and antioxidant capacities of polysaccharides obtained from Laminaria japonica by different extraction media in diet-induced mouse model. Int. J. Food Sci. Tech. 52(10):2274-2281.  https://doi.org/10.1111/ijfs.13508
  68. Youn, J.S., Y.J. Kim, H.J. Na, H.R. Jung, C.K. Song, S.Y. Kang and J.Y. Kim. 2019. Antioxidant activity and contents of leaf extracts obtained from Dendropanax morbifera LEV are dependent on the collecting season and extraction condition. Food Sci. Biotechnol. 28(1):201-207.  https://doi.org/10.1007/s10068-018-0352-y
  69. Zeng, M., X. Wu, F. Li, W. She, L. Zhou, B. Pi, Z. Xu and X. Huang. 2017. Laminaria japonica polysaccharides effectively inhibited the growth of nasopharyngeal carcinoma cells in vivo and in vitro study. Exp. Toxicol Pathol. 69(7):527-532.  https://doi.org/10.1016/j.etp.2017.03.005