DOI QR코드

DOI QR Code

3'UTR Diversity: Expanding Repertoire of RNA Alterations in Human mRNAs

  • Dawon Hong (Laboratory of RNA Cell Biology, Department of Bioconvergence Engineering, Dankook University Graduate School) ;
  • Sunjoo Jeong (Laboratory of RNA Cell Biology, Department of Bioconvergence Engineering, Dankook University Graduate School)
  • Received : 2023.01.02
  • Accepted : 2023.01.08
  • Published : 2023.01.31

Abstract

Genomic information stored in the DNA is transcribed to the mRNA and translated to proteins. The 3' untranslated regions (3'UTRs) of the mRNA serve pivotal roles in post-transcriptional gene expression, regulating mRNA stability, translation, and localization. Similar to DNA mutations producing aberrant proteins, RNA alterations expand the transcriptome landscape and change the cellular proteome. Recent global analyses reveal that many genes express various forms of altered RNAs, including 3'UTR length variants. Alternative polyadenylation and alternative splicing are involved in diversifying 3'UTRs, which could act as a hidden layer of eukaryotic gene expression control. In this review, we summarize the functions and regulations of 3'UTRs and elaborate on the generation and functional consequences of 3'UTR diversity. Given that dynamic 3'UTR length control contributes to phenotypic complexity, dysregulated 3'UTR diversity might be relevant to disease development, including cancers. Thus, 3'UTR diversity in cancer could open exciting new research areas and provide avenues for novel cancer theragnostics.

Keywords

Acknowledgement

This work was supported by the National Research Foundation (NRF), funded by the Ministry of Science & ICT (NRF-2020R1A2C2005358 and NRF-2022M3E5F1016546).

References

  1. Adereth, Y., Dammai, V., Kose, N., Li, R., and Hsu, T. (2005). RNA-dependent integrin alpha3 protein localization regulated by the Muscleblind-like protein MLP1. Nat. Cell Biol. 7, 1240-1247. https://doi.org/10.1038/ncb1335
  2. Amack, J.D. and Mahadevan, M.S. (2001). The myotonic dystrophy expanded CUG repeat tract is necessary but not sufficient to disrupt C2C12 myoblast differentiation. Hum. Mol. Genet. 10, 1879-1887. https://doi.org/10.1093/hmg/10.18.1879
  3. Andreassi, C. and Riccio, A. (2009). To localize or not to localize: mRNA fate is in 3'UTR ends. Trends Cell Biol. 19, 465-474. https://doi.org/10.1016/j.tcb.2009.06.001
  4. Bae, B. and Miura, P. (2020). Emerging roles for 3' UTRs in neurons. Int. J. Mol. Sci. 21, 3413.
  5. Baek, D., Villen, J., Shin, C., Camargo, F.D., Gygi, S.P., and Bartel, D.P. (2008). The impact of microRNAs on protein output. Nature 455, 64-71. https://doi.org/10.1038/nature07242
  6. Berkovits, B.D. and Mayr, C. (2015). Alternative 3' UTRs act as scaffolds to regulate membrane protein localization. Nature 522, 363-367. https://doi.org/10.1038/nature14321
  7. Bicknell, A.A., Cenik, C., Chua, H.N., Roth, F.P., and Moore, M.J. (2012). Introns in UTRs: why we should stop ignoring them. Bioessays 34, 1025-1034. https://doi.org/10.1002/bies.201200073
  8. Bose, M., Lampe, M., Mahamid, J., and Ephrussi, A. (2022). Liquid-to-solid phase transition of oskar ribonucleoprotein granules is essential for their function in Drosophila embryonic development. Cell 185, 1308-1324.e23. https://doi.org/10.1016/j.cell.2022.02.022
  9. Brennan, C.M. and Steitz, J.A. (2001). HuR and mRNA stability. Cell. Mol. Life Sci. 58, 266-277. https://doi.org/10.1007/PL00000854
  10. Broix, L., Turchetto, S., and Nguyen, L. (2021). Coordination between transport and local translation in neurons. Trends Cell Biol. 31, 372-386. https://doi.org/10.1016/j.tcb.2021.01.001
  11. Chagnovich, D. and Cohn, S.L. (1996). Binding of a 40-kDa protein to the N-myc 3'-untranslated region correlates with enhanced N-myc expression in human neuroblastoma. J. Biol. Chem. 271, 33580-33586. https://doi.org/10.1074/jbc.271.52.33580
  12. Chagnovich, D., Fayos, B.E., and Cohn, S.L. (1996). Differential activity of ELAV-like RNA-binding proteins in human neuroblastoma. J. Biol. Chem. 271, 33587-33591. https://doi.org/10.1074/jbc.271.52.33587
  13. Chan, J.J., Tabatabaeian, H., and Tay, Y. (2022a). 3'UTR heterogeneity and cancer progression. Trends Cell Biol. 2022 Nov 11 [Epub]. https://doi.org/10.1016/j.tcb.2022.10.001
  14. Chan, J.J., Zhang, B., Chew, X.H., Salhi, A., Kwok, Z.H., Lim, C.Y., Desi, N., Subramaniam, N., Siemens, A., Kinanti, T., et al. (2022b). Pan-cancer pervasive upregulation of 3' UTR splicing drives tumourigenesis. Nat. Cell Biol. 24, 928-939. https://doi.org/10.1038/s41556-022-00913-z
  15. Chen, H.F., Hsu, C.M., and Huang, Y.S. (2018). CPEB2-dependent translation of long 3'-UTR Ucp1 mRNA promotes thermogenesis in brown adipose tissue. EMBO J. 37, e99071.
  16. Chen, N., Zhang, Y., Adel, M., Kuklin, E.A., Reed, M.L., Mardovin, J.D., Bakthavachalu, B., VijayRaghavan, K., Ramaswami, M., and Griffith, L.C. (2022). Local translation provides the asymmetric distribution of CaMKII required for associative memory formation. Curr. Biol. 32, 2730-2738.e5. https://doi.org/10.1016/j.cub.2022.04.047
  17. Conne, B., Stutz, A., and Vassalli, J.D. (2000). The 3' untranslated region of messenger RNA: a molecular 'hotspot' for pathology? Nat. Med. 6, 637-641. https://doi.org/10.1038/76211
  18. de Planell-Saguer, M., Rodicio, M.C., and Mourelatos, Z. (2010). Rapid in situ codetection of noncoding RNAs and proteins in cells and formalin-fixed paraffin-embedded tissue sections without protease treatment. Nat. Protoc. 5, 1061-1073. https://doi.org/10.1038/nprot.2010.62
  19. Dean, J.L.E., Wait, R., Mahtani, K.R., Sully, G., Clark, A.R., and Saklatvala, J. (2001). The 3' untranslated region of tumor necrosis factor alpha mRNA is a target of the mRNA-stabilizing factor HuR. Mol. Cell. Biol. 21, 721-730. https://doi.org/10.1128/MCB.21.3.721-730.2001
  20. Derti, A., Garrett-Engele, P., Macisaac, K.D., Stevens, R.C., Sriram, S., Chen, R., Rohl, C.A., Johnson, J.M., and Babak, T. (2012). A quantitative atlas of polyadenylation in five mammals. Genome Res. 22, 1173-1183. https://doi.org/10.1101/gr.132563.111
  21. Essafi-Benkhadir, K., Onesto, C., Stebe, E., Moroni, C., and Pages, G. (2007).  Tristetraprolin inhibits Ras-dependent tumor vascularization by inducing vascular endothelial growth factor mRNA degradation. Mol. Biol. Cell 18, 4648-4658. https://doi.org/10.1091/mbc.e07-06-0570
  22. Friedman, R.C., Farh, K.K., Burge, C.B., and Bartel, D.P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92-105. https://doi.org/10.1101/gr.082701.108
  23. Giles, K.M., Daly, J.M., Beveridge, D.J., Thomson, A.M., Voon, D.C., Furneaux, H.M., Jazayeri, J.A., and Leedman, P.J. (2003). The 3'-untranslated region of p21WAF1 mRNA is a composite cis-acting sequence bound by RNA-binding proteins from breast cancer cells, including HuR and poly(C)-binding protein. J. Biol. Chem. 278, 2937-2946. https://doi.org/10.1074/jbc.M208439200
  24. Griesemer, D., Xue, J.R., Reilly, S.K., Ulirsch, J.C., Kukreja, K., Davis, J.R., Kanai, M., Yang, D.K., Butts, J.C., Guney, M.H., et al. (2021). Genome-wide functional screen of 3'UTR variants uncovers causal variants for human disease and evolution. Cell 184, 5247-5260.e19. https://doi.org/10.1016/j.cell.2021.08.025
  25. PCAWG Transcriptome Core Group, Calabrese, C., Davidson, N.R., Demircioglu, D., Fonseca, N.A., He, Y., Kahles, A., Lehmann, K.V., Liu, F., Shiraishi, Y., et al. (2020). Genomic basis for RNA alterations in cancer. Nature 578, 129-136. https://doi.org/10.1038/s41586-020-1970-0
  26. Guo, X. and Hartley, R.S. (2006). HuR contributes to cyclin E1 deregulation in MCF-7 breast cancer cells. Cancer Res. 66, 7948-7956. https://doi.org/10.1158/0008-5472.CAN-05-4362
  27. Herrmann, C.J., Schmidt, R., Kanitz, A., Artimo, P., Gruber, A.J., and Zavolan, M. (2020). PolyASite 2.0: a consolidated atlas of polyadenylation sites from 3' end sequencing. Nucleic Acids Res. 48(D1), D174-D179.
  28. Hoffman, Y., Bublik, D.R., Ugalde, A.P., Elkon, R., Biniashvili, T., Agami, R., Oren, M., and Pilpel, Y. (2016). 3'UTR shortening potentiates microRNA-based repression of pro-differentiation genes in proliferating human cells. PLoS Genet. 12, e1005879.
  29. Hoque, M., Ji, Z., Zheng, D., Luo, W., Li, W., You, B., Park, J.Y., Yehia, G., and Tian, B. (2013). Analysis of alternative cleavage and polyadenylation by 3' region extraction and deep sequencing. Nat. Methods 10, 133-139. https://doi.org/10.1038/nmeth.2288
  30. Huang, Y.S., Carson, J.H., Barbarese, E., and Richter, J.D. (2003). Facilitation of dendritic mRNA transport by CPEB. Genes Dev. 17, 638-653. https://doi.org/10.1101/gad.1053003
  31. Ishimaru, D., Ramalingam, S., Sengupta, T.K., Bandyopadhyay, S., Dellis, S., Tholanikunnel, B.G., Fernandes, D.J., and Spicer, E.K. (2009). Regulation of Bcl-2 expression by HuR in HL60 leukemia cells and A431 carcinoma cells. Mol. Cancer Res. 7, 1354-1366. https://doi.org/10.1158/1541-7786.MCR-08-0476
  32. Jafarifar, F., Yao, P., Eswarappa, S.M., and Fox, P.L. (2011). Repression of VEGFA by CA-rich element-binding microRNAs is modulated by hnRNP L. EMBO J. 30, 1324-1334. https://doi.org/10.1038/emboj.2011.38
  33. Jambor, H., Mueller, S., Bullock, S.L., and Ephrussi, A. (2014). A stem-loop structure directs oskar mRNA to microtubule minus ends. RNA 20, 429-439. https://doi.org/10.1261/rna.041566.113
  34. Ji, Z., Lee, J.Y., Pan, Z., Jiang, B., and Tian, B. (2009). Progressive lengthening of 3' untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc. Natl. Acad. Sci. U. S. A. 106, 7028-7033. https://doi.org/10.1073/pnas.0900028106
  35. Kahles, A., Lehmann, K.V., Toussaint, N.C., Huser, M., Stark, S.G., Sachsenberg, T., Stegle, O., Kohlbacher, O., Sander, C., Cancer Genome Atlas Research Network, et al. (2018). Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell 34, 211-224.e6. https://doi.org/10.1016/j.ccell.2018.07.001
  36. Kiebler, M.A. and Bassell, G.J. (2006). Neuronal RNA granules: movers and makers. Neuron 51, 685-690. https://doi.org/10.1016/j.neuron.2006.08.021
  37. Kim, I., Kwak, H., Lee, H.K., Hyun, S., and Jeong, S. (2012). beta-Catenin recognizes a specific RNA motif in the cyclooxygenase-2 mRNA 3'-UTR and interacts with HuR in colon cancer cells. Nucleic Acids Res. 40, 6863-6872. https://doi.org/10.1093/nar/gks331
  38. Kim, J., Park, R.Y., Kee, Y., Jeong, S., and Ohn, T. (2022). Splicing factor SRSF3 represses translation of p21(cip1/waf1) mRNA. Cell Death Dis. 13, 933.
  39. Kuersten, S. and Goodwin, E.B. (2003). The power of the 3' UTR: translational control and development. Nat. Rev. Genet. 4, 626-637. https://doi.org/10.1038/nrg1125
  40. Kundel, M., Jones, K.J., Shin, C.Y., and Wells, D.G. (2009). Cytoplasmic polyadenylation element-binding protein regulates neurotrophin-3-dependent beta-catenin mRNA translation in developing hippocampal neurons. J. Neurosci. 29, 13630-13639. https://doi.org/10.1523/JNEUROSCI.2910-08.2009
  41. Lai, W.S., Carballo, E., Strum, J.R., Kennington, E.A., Phillips, R.S., and Blackshear, P.J. (1999). Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Mol. Cell. Biol. 19, 4311-4323. https://doi.org/10.1128/MCB.19.6.4311
  42. Lai, W.S., Parker, J.S., Grissom, S.F., Stumpo, D.J., and Blackshear, P.J. (2006). Novel mRNA targets for tristetraprolin (TTP) identified by global analysis of stabilized transcripts in TTP-deficient fibroblasts. Mol. Cell. Biol. 26, 9196-9208. https://doi.org/10.1128/MCB.00945-06
  43. Larocque, D., Galarneau, A., Liu, H.N., Scott, M., Almazan, G., and Richard, S. (2005). Protection of p27(Kip1) mRNA by quaking RNA binding proteins promotes oligodendrocyte differentiation. Nat. Neurosci. 8, 27-33. https://doi.org/10.1038/nn1359
  44. Lee, H.K. and Jeong, S. (2006). Beta-Catenin stabilizes cyclooxygenase-2 mRNA by interacting with AU-rich elements of 3'-UTR. Nucleic Acids Res. 34, 5705-5714. https://doi.org/10.1093/nar/gkl698
  45. Li, Z., Zhang, Y., Li, D., and Feng, Y. (2000). Destabilization and mislocalization of myelin basic protein mRNAs in quaking dysmyelination lacking the QKI RNA-binding proteins. J. Neurosci. 20, 4944-4953. https://doi.org/10.1523/JNEUROSCI.20-13-04944.2000
  46. Lorenz, R., Bernhart, S.H., Honer Zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P.F., and Hofacker, I.L. (2011). ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26.
  47. Ma, W. and Mayr, C. (2018). A membraneless organelle associated with the endoplasmic reticulum enables 3'UTR-mediated protein-protein interactions. Cell 175, 1492-1506.e19. https://doi.org/10.1016/j.cell.2018.10.007
  48. Marini, F., Scherzinger, D., and Danckwardt, S. (2021). TREND-DB-a transcriptome-wide atlas of the dynamic landscape of alternative polyadenylation. Nucleic Acids Res. 49(D1), D243-D253. https://doi.org/10.1093/nar/gkaa722
  49. Matoulkova, E., Michalova, E., Vojtesek, B., and Hrstka, R. (2012). The role of the 3' untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol. 9, 563-576. https://doi.org/10.4161/rna.20231
  50. Mayr, C. (2016). Evolution and biological roles of alternative 3'UTRs. Trends Cell Biol. 26, 227-237. https://doi.org/10.1016/j.tcb.2015.10.012
  51. Mayr, C. (2019). What are 3' UTRs doing? Cold Spring Harb. Perspect. Biol. 11, a034728.
  52. Mayr, C. and Bartel, D.P. (2009). Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138, 673-684. https://doi.org/10.1016/j.cell.2009.06.016
  53. Mitschka, S. and Mayr, C. (2022). Context-specific regulation and function of mRNA alternative polyadenylation. Nat. Rev. Mol. Cell Biol. 23, 779-796. https://doi.org/10.1038/s41580-022-00507-5
  54. Moore, M.J. (2005). From birth to death: the complex lives of eukaryotic mRNAs. Science 309, 1514-1518. https://doi.org/10.1126/science.1111443
  55. Nam, J.W., Rissland, O.S., Koppstein, D., Abreu-Goodger, C., Jan, C.H., Agarwal, V., Yildirim, M.A., Rodriguez, A., and Bartel, D.P. (2014). Global analyses of the effect of different cellular contexts on microRNA targeting. Mol. Cell 53, 1031-1043. https://doi.org/10.1016/j.molcel.2014.02.013
  56. Navarro, E., Mallen, A., and Hueso, M. (2021). Dynamic variations of 3'UTR length reprogram the mRNA regulatory landscape. Biomedicines 9, 1560.
  57. Paolantoni, C., Ricciardi, S., De Paolis, V., Okenwa, C., Catalanotto, C., Ciotti, M.T., Cattaneo, A., Cogoni, C., and Giorgi, C. (2018). Arc 3' UTR splicing leads to dual and antagonistic effects in fine-tuning Arc expression upon BDNF signaling. Front. Mol. Neurosci. 11, 145.
  58. Park, S.K. and Jeong, S. (2016). SRSF3 represses the expression of PDCD4 protein by coordinated regulation of alternative splicing, export and translation. Biochem. Biophys. Res. Commun. 470, 431-438. https://doi.org/10.1016/j.bbrc.2016.01.019
  59. Pascual, M., Vicente, M., Monferrer, L., and Artero, R. (2006). The Muscleblind family of proteins: an emerging class of regulators of developmentally programmed alternative splicing. Differentiation 74, 65-80. https://doi.org/10.1111/j.1432-0436.2006.00060.x
  60. Pesole, G., Liuni, S., Grillo, G., Licciulli, F., Mignone, F., Gissi, C., and Saccone, C. (2002). UTRdb and UTRsite: specialized databases of sequences and functional elements of 5' and 3' untranslated regions of eukaryotic mRNAs. Update 2002. Nucleic Acids Res. 30, 335-340. https://doi.org/10.1093/nar/30.1.335
  61. Reamon-Buettner, S.M., Cho, S.H., and Borlak, J. (2007). Mutations in the 3'-untranslated region of GATA4 as molecular hotspots for congenital heart disease (CHD). BMC Med. Genet. 8, 38.
  62. Rook, M.S., Lu, M., and Kosik, K.S. (2000). CaMKIIalpha 3' untranslated region-directed mRNA translocation in living neurons: visualization by GFP linkage. J. Neurosci. 20, 6385-6393. https://doi.org/10.1523/JNEUROSCI.20-17-06385.2000
  63. Rothamel, K., Arcos, S., Kim, B., Reasoner, C., Lisy, S., Mukherjee, N., and Ascano, M. (2021). ELAVL1 primarily couples mRNA stability with the 3' UTRs of interferon-stimulated genes. Cell Rep. 35, 109178.
  64. Sawaoka, H., Dixon, D.A., Oates, J.A., and Boutaud, O. (2003). Tristetraprolin binds to the 3'-untranslated region of cyclooxygenase-2 mRNA. A polyadenylation variant in a cancer cell line lacks the binding site. J. Biol. Chem. 278, 13928-13935. https://doi.org/10.1074/jbc.M300016200
  65. Sengupta, S., Jang, B.C., Wu, M.T., Paik, J.H., Furneaux, H., and Hla, T. (2003). The RNA-binding protein HuR regulates the expression of cyclooxygenase-2. J. Biol. Chem. 278, 25227-25233. https://doi.org/10.1074/jbc.M301813200
  66. Sood, P., Krek, A., Zavolan, M., Macino, G., and Rajewsky, N. (2006). Cell-type-specific signatures of microRNAs on target mRNA expression. Proc. Natl. Acad. Sci. U. S. A. 103, 2746-2751. https://doi.org/10.1073/pnas.0511045103
  67. St Johnston, D. (2005). Moving messages: the intracellular localization of mRNAs. Nat. Rev. Mol. Cell Biol. 6, 363-375. https://doi.org/10.1038/nrm1643
  68. Steinman, R.A. (2007). mRNA stability control: a clandestine force in normal and malignant hematopoiesis. Leukemia 21, 1158-1171. https://doi.org/10.1038/sj.leu.2404656
  69. Taneja, K.L., McCurrach, M., Schalling, M., Housman, D., and Singer, R.H. (1995). Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J. Cell Biol. 128, 995-1002. https://doi.org/10.1083/jcb.128.6.995
  70. Thiele, A., Nagamine, Y., Hauschildt, S., and Clevers, H. (2006). AU-rich elements and alternative splicing in the beta-catenin 3'UTR can influence the human beta-catenin mRNA stability. Exp. Cell Res. 312, 2367-2378. https://doi.org/10.1016/j.yexcr.2006.03.029
  71. Tian, B. and Manley, J.L. (2013). Alternative cleavage and polyadenylation: the long and short of it. Trends Biochem. Sci. 38, 312-320. https://doi.org/10.1016/j.tibs.2013.03.005
  72. Tian, S., Curnutte, H.A., and Trcek, T. (2020). RNA granules: a view from the RNA perspective. Molecules 25, 3130.
  73. Vernet, C. and Artzt, K. (1997). STAR, a gene family involved in signal transduction and activation of RNA. Trends Genet. 13, 479-484. https://doi.org/10.1016/S0168-9525(97)01269-9
  74. Wang, R., Nambiar, R., Zheng, D., and Tian, B. (2018). PolyA_DB 3 catalogs cleavage and polyadenylation sites identified by deep sequencing in multiple genomes. Nucleic Acids Res. 46(D1), D315-D319. https://doi.org/10.1093/nar/gkx1000
  75. Wang, W., Caldwell, M.C., Lin, S., Furneaux, H., and Gorospe, M. (2000). HuR regulates cyclin A and cyclin B1 mRNA stability during cell proliferation. EMBO J. 19, 2340-2350. https://doi.org/10.1093/emboj/19.10.2340
  76. Wang, W., Fang, D.H., Gan, J., Shi, Y., Tang, H., Wang, H., Fu, M.Z., and Yi, J. (2019). Evolutionary and functional implications of 3' untranslated region length of mRNAs by comprehensive investigation among four taxonomically diverse metazoan species. Genes Genomics 41, 747-755. https://doi.org/10.1007/s13258-019-00808-8
  77. Wang, W., Yang, X., Cristofalo, V.J., Holbrook, N.J., and Gorospe, M. (2001). Loss of HuR is linked to reduced expression of proliferative genes during replicative senescence. Mol. Cell. Biol. 21, 5889-5898. https://doi.org/10.1128/MCB.21.17.5889-5898.2001
  78. Wiestner, A., Tehrani, M., Chiorazzi, M., Wright, G., Gibellini, F., Nakayama, K., Liu, H., Rosenwald, A., Muller-Hermelink, H.K., Ott, G., et al. (2007). Point mutations and genomic deletions in CCND1 create stable truncated cyclin D1 mRNAs that are associated with increased proliferation rate and shorter survival. Blood 109, 4599-4606. https://doi.org/10.1182/blood-2006-08-039859
  79. Wilson, G.M., Sun, Y., Sellers, J., Lu, H., Penkar, N., Dillard, G., and Brewer, G. (1999). Regulation of AUF1 expression via conserved alternatively spliced elements in the 3' untranslated region. Mol. Cell. Biol. 19, 4056-4064. https://doi.org/10.1128/MCB.19.6.4056
  80. Wu, H., Zhou, J., Zhu, T., Cohen, I., and Dictenberg, J. (2020). A kinesin adapter directly mediates dendritic mRNA localization during neural development in mice. J. Biol. Chem. 295, 6605-6628. https://doi.org/10.1074/jbc.RA118.005616
  81. Yang, H.D. and Nam, S.W. (2020). Pathogenic diversity of RNA variants and RNA variation-associated factors in cancer development. Exp. Mol. Med. 52, 582-593. https://doi.org/10.1038/s12276-020-0429-6
  82. Zearfoss, N.R., Clingman, C.C., Farley, B.M., McCoig, L.M., and Ryder, S.P. (2011). Quaking regulates Hnrnpa1 expression through its 3' UTR in oligodendrocyte precursor cells. PLoS Genet. 7, e1001269.
  83. Zhao, L., Ku, L., Chen, Y., Xia, M., LoPresti, P., and Feng, Y. (2006). QKI binds MAP1B mRNA and enhances MAP1B expression during oligodendrocyte development. Mol. Biol. Cell 17, 4179-4186. https://doi.org/10.1091/mbc.e06-04-0355
  84. Zhu, S., Lian, Q., Ye, W., Qin, W., Wu, Z., Ji, G., and Wu, X. (2022). scAPAdb: a comprehensive database of alternative polyadenylation at single-cell resolution. Nucleic Acids Res. 50(D1), D365-D370. https://doi.org/10.1093/nar/gkab795