Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF), funded by the Ministry of Science & ICT (Basic Science Research Program (2020R1C1C1007820) and the Bio & Medical Technology Development Program (2022M3E5F1017743), and by a grant (22203MFDS402, 22203MFDS405) from the Ministry of Food and Drug Safety in 2022.
References
- Berraondo, P., Martini, P.G.V., Avila, M.A., and Fontanellas, A. (2019). Messenger RNA therapy for rare genetic metabolic diseases. Gut 68, 1323-1330. https://doi.org/10.1136/gutjnl-2019-318269
- Billingsley, M.M., Singh, N., Ravikumar, P., Zhang, R., June, C.H., and Mitchell, M.J. (2020). Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering. Nano Lett. 20, 1578-1589. https://doi.org/10.1021/acs.nanolett.9b04246
- Byun, M.J., Lim, J., Kim, S.N., Park, D.H., Kim, T.H., Park, W., and Park, C.G. (2022). Advances in nanoparticles for effective delivery of RNA therapeutics. Biochip J. 16, 128-145. https://doi.org/10.1007/s13206-022-00052-5
- Cheng, Q., Wei, T., Farbiak, L., Johnson, L.T., Dilliard, S.A., and Siegwart, D.J. (2020). Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 15, 313-320. https://doi.org/10.1038/s41565-020-0669-6
- Hou, X., Zaks, T., Langer, R., and Dong, Y. (2021). Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078-1094. https://doi.org/10.1038/s41578-021-00358-0
- Jackson, N.A.C., Kester, K.E., Casimiro, D., Gurunathan, S., and DeRosa, F. (2020). The promise of mRNA vaccines: a biotech and industrial perspective. NPJ Vaccines 5, 11.
- Kariko, K., Buckstein, M., Ni, H., and Weissman, D. (2005). Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165-175. https://doi.org/10.1016/j.immuni.2005.06.008
- Kariko, K., Muramatsu, H., Keller, J.M., and Weissman, D. (2012). Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol. Ther. 20, 948-953. https://doi.org/10.1038/mt.2012.7
- Kariko, K., Muramatsu, H., Welsh, F.A., Ludwig, J., Kato, H., Akira, S., and Weissman, D. (2008). Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833-1840. https://doi.org/10.1038/mt.2008.200
- Kwon, H., Kim, M., Seo, Y., Moon, Y.S., Lee, H.J., Lee, K., and Lee, H. (2018). Emergence of synthetic mRNA: in vitro synthesis of mRNA and its applications in regenerative medicine. Biomaterials 156, 172-193. https://doi.org/10.1016/j.biomaterials.2017.11.034
- Lee, K., Kim, M., Seo, Y., and Lee, H. (2018). Development of mRNA vaccines and their prophylactic and therapeutic applications. Nano Res. 11, 5173-5192. https://doi.org/10.1007/s12274-018-2095-8
- Magadum, A., Kaur, K., and Zangi, L. (2019). mRNA-based protein replacement therapy for the heart. Mol. Ther. 27, 785-793. https://doi.org/10.1016/j.ymthe.2018.11.018
- Pardi, N., Hogan, M.J., Porter, F.W., and Weissman, D. (2018). mRNA vaccines - a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261-279. https://doi.org/10.1038/nrd.2017.243
- Paunovska, K., Loughrey, D., and Dahlman, J.E. (2022). Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 23, 265-280. https://doi.org/10.1038/s41576-021-00439-4
- Sahin, U., Kariko, K., and Tureci, O. (2014). mRNA-based therapeutics--developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759-780. https://doi.org/10.1038/nrd4278
- Schlee, M. and Hartmann, G. (2016). Discriminating self from non-self in nucleic acid sensing. Nat. Rev. Immunol. 16, 566-580. https://doi.org/10.1038/nri.2016.78
- Sebastiani, F., Yanez Arteta, M., Lerche, M., Porcar, L., Lang, C., Bragg, R.A., Elmore, C.S., Krishnamurthy, V.R., Russell, R.A., Darwish, T., et al. (2021). Apolipoprotein E binding drives structural and compositional rearrangement of mRNA-containing lipid nanoparticles. ACS Nano 15, 6709-6722. https://doi.org/10.1021/acsnano.0c10064
- Uchida, S., Itaka, K., Uchida, H., Hayakawa, K., Ogata, T., Ishii, T., Fukushima, S., Osada, K., and Kataoka, K. (2013). In vivo messenger RNA introduction into the central nervous system using polyplex nanomicelle. PLoS One 8, e56220.
- Vallazza, B., Petri, S., Poleganov, M.A., Eberle, F., Kuhn, A.N., and Sahin, U. (2015). Recombinant messenger RNA technology and its application in cancer immunotherapy, transcript replacement therapies, pluripotent stem cell induction, and beyond. Wiley Interdiscip. Rev. RNA 6, 471-499. https://doi.org/10.1002/wrna.1288
- Wang, F., Zuroske, T., and Watts, J.K. (2020). RNA therapeutics on the rise. Nat. Rev. Drug Discov. 19, 441-442. https://doi.org/10.1038/d41573-020-00078-0
- Warren, L. and Lin, C. (2019). mRNA-based genetic reprogramming. Mol. Ther. 27, 729-734. https://doi.org/10.1016/j.ymthe.2018.12.009
- Yoon, B.K., Oh, T.G., Bu, S., Seo, K.J., Kwon, S.H., Lee, J.Y., Kim, Y., Kim, J.W., Ahn, H.S., and Fang, S. (2022). The peripheral immune landscape in a patient with myocarditis after the administration of BNT162b2 mRNA vaccine. Mol. Cells 45, 738-748. https://doi.org/10.14348/molcells.2022.0031
- Zelphati, O., Nguyen, C., Ferrari, M., Felgner, J., Tsai, Y., and Felgner, P.L. (1998). Stable and monodisperse lipoplex formulations for gene delivery. Gene Ther. 5, 1272-1282. https://doi.org/10.1038/sj.gt.3300707