DOI QR코드

DOI QR Code

Current status and clinical application of patient-derived tumor organoid model in kidney and prostate cancers

  • Eunjeong Seo (Molecular Pharmacology, OliPass Corporation) ;
  • Minyong Kang (Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • Received : 2022.11.11
  • Accepted : 2022.12.02
  • Published : 2023.01.31

Abstract

Urological cancers such as kidney, bladder, prostate, and testicular cancers are the most common types of cancers worldwide with high mortality and morbidity. To date, traditional cell lines and animal models have been broadly used to study pre-clinical applications and underlying molecular mechanisms of urological cancers. However, they cannot reflect biological phenotypes of real tissues and clinical diversities of urological cancers in vitro system. In vitro models cannot be utilized to reflect the tumor microenvironment or heterogeneity. Cancer organoids in three-dimensional culture have emerged as a promising platform for simulating tumor microenvironment and revealing heterogeneity. In this review, we summarize recent advances in prostate and kidney cancer organoids regarding culture conditions, advantages, and applications of these cancer organoids.

Keywords

Acknowledgement

This work was supported by grants from the Basic Science Research Program of the National Research Foundation (NRF) of Korea, which is funded by the Ministry of Science and ICT (NRF-2020R1A2C2007662 and NRF-2020R1C1C1005054), a grant from Seoul R&BD Program (BT210153), and a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HR20C0025).

References

  1. Siegel RL, Miller KD, Fuchs HE and Jemal A (2021) Cancer statistics, 2021. CA Cancer J Clin 71, 7-33 https://doi.org/10.3322/caac.21654
  2. Gao D and Chen Y (2015) Organoid development in cancer genome discovery. Curr Opin Genet Dev 30, 42-48 https://doi.org/10.1016/j.gde.2015.02.007
  3. Karantanos T, Corn PG and Thompson TC (2013) Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene 32, 5501-5511 https://doi.org/10.1038/onc.2013.206
  4. Sobel RE and Sadar MD (2005) Cell lines used in prostate cancer research: a compendium of old and new lines - Part 2. J Urology 173, 360-372 https://doi.org/10.1097/01.ju.0000149989.01263.dc
  5. Namekawa T, Ikeda K, Horie-Inoue K and Inoue S (2019) Application of prostate cancer models for preclinical study: advantages and limitations of cell lines, patientderived xenografts, and three-dimensional culture of patientderived cells. Cells 8, 74
  6. van Bokhoven A, Varella-Garcia M, Korch C et al (2003) Molecular characterization of human prostate carcinoma cell lines. Prostate 57, 205-225 https://doi.org/10.1002/pros.10290
  7. Chen H, Zhang W, Maskey N et al (2022) Urological cancer organoids, patients' avatars for precision medicine: past, present and future. Cell Biosci 12, 132
  8. Jacob F, Salinas RD, Zhang DY et al (2020) A patientderived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell 180, 188-204 e22
  9. Kopper O, de Witte CJ, Lohmussaar K et al (2019) An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat Med 25, 838-849 https://doi.org/10.1038/s41591-019-0422-6
  10. Fan H, Demirci U and Chen P (2019) Emerging organoid models: leaping forward in cancer research. J Hematol Oncol 12, 142
  11. Vela I and Chen Y (2015) Prostate cancer organoids: a potential new tool for testing drug sensitivity. Expert Rev Anticancer Ther 15, 261-263 https://doi.org/10.1586/14737140.2015.1003046
  12. Tuveson D and Clevers H (2019) Cancer modeling meets human organoid technology. Science 364, 952-955 https://doi.org/10.1126/science.aaw6985
  13. Zhou L, Zhang C, Zhang Y and Shi C (2021) Application of organoid models in prostate cancer research. Front Oncol 11, 736431
  14. Usui T, Sakurai M, Nishikawa S et al (2017) Establishment of a dog primary prostate cancer organoid using the urine cancer stem cells. Cancer Sci 108, 2383-2392 https://doi.org/10.1111/cas.13418
  15. Inoue T, Terada N, Kobayashi T and Ogawa O (2017) Patient-derived xenografts as in vivo models for research in urological malignancies. Nat Rev Urol 14, 267-283 https://doi.org/10.1038/nrurol.2017.19
  16. Xu R, Zhou X, Wang S and Trinkle C (2021) Tumor organoid models in precision medicine and investigating cancer-stromal interactions. Pharmacol Ther 218, 107668
  17. Gopal S, Rodrigues AL and Dordick JS (2020) Exploiting CRISPR Cas9 in three-dimensional stem cell cultures to model disease. Front Bioeng Biotechnol 8, 692
  18. Li Y, Tang P, Cai S, Peng J and Hua G (2020) Organoid based personalized medicine: from bench to bedside. Cell Regen 9, 21
  19. Botti G, Di Bonito M and Cantile M (2021) Organoid biobanks as a new tool for pre-clinical validation of candidate drug efficacy and safety. Int J Physiol Pathophysiol Pharmacol 13, 17-21
  20. Litwin MS and Tan HJ (2017) The diagnosis and treatment of prostate cancer: a review. JAMA 317, 2532-2542 https://doi.org/10.1001/jama.2017.7248
  21. Conteduca V, Oromendia C, Eng KW et al (2019) Clinical features of neuroendocrine prostate cancer. Eur J Cancer 121, 7-18 https://doi.org/10.1016/j.ejca.2019.08.011
  22. Chandrasekar T, Yang JC, Gao AC and Evans CP (2015) Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl Androl Urol 4, 365-380
  23. Angeles AK, Bauer S, Ratz L, Klauck SM and Sultmann H (2018) Genome-based classification and therapy of prostate cancer. Diagnostics (Basel) 8, 62
  24. Wyatt AW, Mo F, Wang K et al (2014) Heterogeneity in the inter-tumor transcriptome of high risk prostate cancer. Genome Biol 15, 426
  25. Gao D, Vela I, Sboner A et al (2014) Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176-187 https://doi.org/10.1016/j.cell.2014.08.016
  26. Drost J, Karthaus WR, Gao D et al (2016) Organoid culture systems for prostate epithelial and cancer tissue. Nat Protoc 11, 347-358 https://doi.org/10.1038/nprot.2016.006
  27. Sato T, Vries RG, Snippert HJ et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262-265 https://doi.org/10.1038/nature07935
  28. Karthaus WR, Iaquinta PJ, Drost J et al (2014) Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159, 163-175 https://doi.org/10.1016/j.cell.2014.08.017
  29. Cook C, Vezina CM, Allgeier SH et al (2007) Noggin is required for normal lobe patterning and ductal budding in the mouse prostate. Dev Biol 312, 217-230 https://doi.org/10.1016/j.ydbio.2007.09.038
  30. Cheaito K, Bahmad HF, Jalloul H et al (2020) Epidermal growth factor is essential for the maintenance of novel prostate epithelial cells isolated from patient-derived organoids. Front Cell Dev Biol 8, 571677
  31. Kato M, Ishii K, Iwamoto Y et al (2013) Activation of FGF2-FGFR signaling in the castrated mouse prostate stimulates the proliferation of basal epithelial cells. Biol Reprod 89, 81
  32. Liu X, Ory V, Chapman S et al (2012) ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am J Pathol 180, 599-607 https://doi.org/10.1016/j.ajpath.2011.10.036
  33. Khanna S, Mitra S, Lakhera PC and Khandelwal S (2016) N-acetylcysteine effectively mitigates cadmium-induced oxidative damage and cell death in Leydig cells in vitro. Drug Chem Toxicol 39, 74-80 https://doi.org/10.3109/01480545.2015.1028068
  34. Maitland NJ, Frame FM, Polson ES, Lewis JL and Collins AT (2011) Prostate cancer stem cells: do they have a basal or luminal phenotype? Horm Cancer 2, 47-61 https://doi.org/10.1007/s12672-010-0058-y
  35. Wang ZA, Toivanen R, Bergren SK, Chambon P and Shen MM (2014) Luminal cells are favored as the cell of origin for prostate cancer. Cell Rep 8, 1339-1346 https://doi.org/10.1016/j.celrep.2014.08.002
  36. Lee JK, Phillips JW, Smith BA et al (2016) N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells. Cancer Cell 29, 536-547 https://doi.org/10.1016/j.ccell.2016.03.001
  37. Park JW, Lee JK, Phillips JW et al (2016) Prostate epithelial cell of origin determines cancer differentiation state in an organoid transformation assay. Proc Natl Acad Sci U S A 113, 4482-4487 https://doi.org/10.1073/pnas.1603645113
  38. Wang X, Kruithof-de Julio M, Economides KD et al (2009) A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461, 495-500 https://doi.org/10.1038/nature08361
  39. Pappas KJ, Choi D, Sawyers CL and Karthaus WR (2019) Prostate organoid cultures as tools to translate genotypes and mutational profiles to pharmacological responses. J Vis Exp, e60346
  40. Hsieh JJ, Purdue MP, Signoretti S et al (2017) Renal cell carcinoma. Nat Rev Dis Primers 3, 1-19 https://doi.org/10.1038/nrdp.2017.9
  41. Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366, 883-892 https://doi.org/10.1056/NEJMoa1113205
  42. Kuroda N and Tanaka A (2014) Recent classification of renal epithelial tumors. Med Mol Morphol 47, 68-75 https://doi.org/10.1007/s00795-013-0033-0
  43. Valente MJ, Henrique R, Costa VL et al (2011) A rapid and simple procedure for the establishment of human normal and cancer renal primary cell cultures from surgical specimens. PLoS One 6, e19337
  44. Grassi L, Alfonsi R, Francescangeli F et al (2019) Organoids as a new model for improving regenerative medicine and cancer personalized therapy in renal diseases. Cell Death Dis 10, 201
  45. Gedye C, Sirskyj D, Lobo NC et al (2016) Cancer stem cells are underestimated by standard experimental methods in clear cell renal cell carcinoma. Sci Rep 6, 25220
  46. Na JC, Kim JH, Kim SY et al (2020) Establishment of patient-derived three-dimensional organoid culture in renal cell carcinoma. Investig Clin Urol 61, 216-223 https://doi.org/10.4111/icu.2020.61.2.216
  47. Fendler A, Bauer D, Busch J et al (2020) Inhibiting WNT and NOTCH in renal cancer stem cells and the implications for human patients. Nat Commun 11, 929
  48. Bauer D, Birchmeier W and Fendler A (2020) Establishment of kidney cancer organoid cultures. https://assets.researchsquare.com/files/pex-911/v1_covered.pdf?c=1631834228
  49. Batchelder CA, Martinez ML, Duru N, Meyers FJ and Tarantal AF (2015) Three dimensional culture of human renal cell carcinoma organoids. PLoS One 10, e0136758
  50. Sun G, Ding B, Wan M, Chen L, Jackson J and Atala A (2020) Formation and optimization of three-dimensional organoids generated from urine-derived stem cells for renal function in vitro. Stem Cell Res Ther 11, 309
  51. Wang S, Gao D and Chen Y (2017) The potential of organoids in urological cancer research. Nat Rev Urol 14, 401-414 https://doi.org/10.1038/nrurol.2017.65
  52. Zhang P, Wang D, Zhao Y et al (2017) Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabilization and AKT-mTORC1 activation. Nat Med 23, 1055-1062 https://doi.org/10.1038/nm.4379
  53. Yan Y, Ma J, Wang D et al (2019) The novel BET-CBP/p300 dual inhibitor NEO2734 is active in SPOP mutant and wild-type prostate cancer. EMBO Mol Med 11, e10659
  54. Song H, Weinstein HNW, Allegakoen P et al (2022) Single-cell analysis of human primary prostate cancer reveals the heterogeneity of tumor-associated epithelial cell states. Nat Commun 13, 141
  55. McCray T, Moline D, Baumann B, Vander Griend DJ and Nonn L (2019) Single-cell RNA-Seq analysis identifies a putative epithelial stem cell population in human primary prostate cells in monolayer and organoid culture conditions. Am J Clin Exp Urol 7, 123-138
  56. Robinson D, Van Allen EM, Wu Y-M et al (2015) Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215-1228 https://doi.org/10.1016/j.cell.2015.05.001
  57. Arora VK, Schenkein E, Murali R et al (2013) Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 155, 1309-1322 https://doi.org/10.1016/j.cell.2013.11.012
  58. Mu P, Zhang Z, Benelli M et al (2017) SOX2 promotes lineage plasticity and antiandrogen resistance in TP53-and RB1-deficient prostate cancer. Science 355, 84-88 https://doi.org/10.1126/science.aah4307
  59. Han H, Wang Y, Curto J et al (2022) Mesenchymal and stem-like prostate cancer linked to therapy-induced lineage plasticity and metastasis. Cell Rep 39, 110595
  60. Li Z, Xu H, Yu L et al (2022) Patient-derived renal cell carcinoma organoids for personalized cancer therapy. Clin Transl Med 12, e970
  61. Bolck HA, Corro C, Kahraman A et al (2021) Tracing clonal dynamics reveals that two- and three-dimensional patient-derived cell models capture tumor heterogeneity of clear cell renal cell carcinoma. Eur Urol Focus 7, 152-162 https://doi.org/10.1016/j.euf.2019.06.009
  62. Kazama A, Anraku T, Kuroki H et al (2021) Development of patient-derived tumor organoids and a drug testing model for renal cell carcinoma. Oncol Rep 46, 1-8 https://doi.org/10.3892/or.2021.8177
  63. Clevers H (2016) Modeling development and disease with organoids. Cell 165, 1586-1597 https://doi.org/10.1016/j.cell.2016.05.082