DOI QR코드

DOI QR Code

Application of Lactococcus lactis HY7803 into Soybean Fermentation for Production of Glutamic Acid

글루탐산 생산을 위한 Lactococcus lactis HY7803 균주의 대두 발효 적용

  • Jungmin Lee (Department of Food and Nutrition, Dongduk Women's University) ;
  • Sojeong Heo (Department of Food and Nutrition, Dongduk Women's University) ;
  • Jihoon Choi (R&BD Center, Korea Yakult Co., Ltd.) ;
  • Eunji Pyo (R&BD Center, Korea Yakult Co., Ltd.) ;
  • Myounghee Lee (R&BD Center, Korea Yakult Co., Ltd.) ;
  • Sangick Shin (R&BD Center, Korea Yakult Co., Ltd.) ;
  • Jaehwan Lee (R&BD Center, Korea Yakult Co., Ltd.) ;
  • Junglyoul Lee (R&BD Center, Korea Yakult Co., Ltd.) ;
  • Do-Won Jeong (Department of Food and Nutrition, Dongduk Women's University)
  • Received : 2023.01.18
  • Accepted : 2023.02.15
  • Published : 2023.03.28

Abstract

The glutamic acid producing strain for development savory taste enhancing foods was identified the possibility through application into soybean fermentation. To check the effects on glutamic acid production during soybean fermentation, Lactococcus lactis HY7803 was introduced as a starter. The soybean samples were analyzed on days 0, 7, 14 and 21. The numbers of bacteria decreased gradually, while the content of amino-type nitrogen increased during fermentation in the soybean with L. lactis HY7803. Glutamic acid content in soybeans with L. lactis HY7803 increased from 114.99 ± 9.37 pmol/ul on day 0 to 138.14 ± 1.76 pmol/ul on day 21, showing an overall higher amino acid content than soybeans without L. lactis HY7803 and similar content to soybeans with Aspergillus oryzae SNU-G. It was clearly distinguished through principal component analysis. Consequently, our results indicate that L. lactis HY7803 is available as a fungus replacement and may be a good starter strain for enhancing savory taste in vitro as well as soybean fermentation.

Lactococcus lactis HY7803 균주를 대두 발효에 적용하여 맛 성분을 향상시키는 조미료 제조에 대한 이용 가능성을 확인하고자 대두 발효를 진행하였다. 대두발효물의 이화학적 분석 결과에 따르면, L. lactis HY7803 균주를 접종한 대두 발효물은 발효가 진행되면서 아미노태질소 함량, 아미노산 함량이 증가한 반면, 생균수가 감소하였다. 또한 맛성분에 기여하는 아미노산인 글루탐산의 함량을 보면, 발효가 진행됨에 따라 114.99 ± 9.37 pmol/ul에서 138.14 ± 1.76 pmol/ul로 함량이 증가하였고, 글루탐산을 포함한 12개의 아미노산 함량이 음성대조군인 균을 첨가하지 않은 대두발효물에 비해 높았고, Aspergillus oryzae SNU-G를 첨가한 대두발효물과 유사한 함량으로 측정되었다. 따라서 본 연구의 결과는 L. lactis HY7803가 A. oryzae SNU-G의 대체종균으로써 이용 가능하며, 대두 발효를 통해 감칠맛 성분을 생산하는데 기여하는 종균으로써 효과적일 것으로 판단하였다.

Keywords

Acknowledgement

This research was supported by the Korea Yakult Co., Ltd.

References

  1. Bellisle F. 1999. Glutamate and the UMAMI taste: sensory, metabolic, nutritional and behavioural considerations. A review of the literature published in the last 10 years. Neurosci. Biobehav. Rev. 23: 423-438.  https://doi.org/10.1016/S0149-7634(98)00043-8
  2. Ikeda K. 2002. New seasonings. Chem. Senses. 27: 847-849.  https://doi.org/10.1093/chemse/27.9.847
  3. Kurihara K. 2015. Umami the fifth basic taste: history of studies on receptor mechanisms and role as a food flavor. BioMed Res. Int. 2015: 189402. 
  4. Yoshida Y. 1998. Umami taste and traditional seasonings. Food Rev. Int. 14: 213-246.  https://doi.org/10.1080/87559129809541158
  5. Populin T, Moret S, Truant S, Conte LS. 2007. A survey on the presence of free glutamic acid in foodstuffs, with and without added monosodium glutamate. Food Chem. 104: 1712-1717.  https://doi.org/10.1016/j.foodchem.2007.03.034
  6. Stanska K, Krzeski A. 2016. The umami taste: from discovery to clinical use. Otolaryngol. Pol. 70: 10-15.  https://doi.org/10.5604/00306657.1199991
  7. Lim BS. 2019. History of fermented condiments industry in Korea. Food Sci. Ind. 52: 68-83. 
  8. Garcia M, Torre M, Marina M, Laborda F, Rodriquez AR. 1997. Composition and characterization of soyabean and related products. Crit. Rev. Food Sci. Nutr. 37: 361-391.  https://doi.org/10.1080/10408399709527779
  9. Kwon DY, Oh SW, Lee JS, Yang HJ, Lee SH, Lee JH, et al. 2002. Amino acid substitution of hypocholesterolemic peptide originated from glycinin hydrolyzate. Food Sci. Biotechnol. 11: 55-61. 
  10. Kwon DY, Kim S, Kim HYL, Kim KS. 2003. Changes in physicochemical properties of glycinin due to maleylation. Food Sci. Biotechnol. 12: 122-127. 
  11. Catsimpoolas N, Kenney J, Meyer E, Szuhaj B. 1971. Molecular weight and amino acid composition of glycinin subunits. J. Sci. Food Agric. 22: 448-450.  https://doi.org/10.1002/jsfa.2740220905
  12. Yagasaki K, Takagi T, Sakai M, Kitamura K. 1997. Biochemical characterization of soybean protein consisting of different subunits of glycinin. J. Agric. Food Chem. 45: 656-660.  https://doi.org/10.1021/jf9604394
  13. Liu L, Chen X, Hao L, Zhang G, Jin Z, Li C, et al. 2020. Traditional fermented soybean products: processing, flavor formation, nutritional and biological activities. Crit. Rev. Food Sci. Nutr. 62: 1971-1989.  https://doi.org/10.1080/10408398.2020.1848792
  14. Frias J, Song YS, Martinez VC, Gonzalez ME, Vidal VC. 2008. Immunoreactivity and amino acid content of fermented soybean products. J. Agric. Food Chem. 56: 99-105.  https://doi.org/10.1021/jf072177j
  15. Seo JS, Man EM, Lee TS. 1986. Effect of meju shapes and strains on the chemical composition of soybean paste. J. Korean Soc. Food Sci. Nutr. 15: 1-9. 
  16. Lee J, Heo S, Choi J, Kim M, Pyo E, Lee M, et al. 2021. Selection of Lactococcus lactis HY7803 for glutamic acid production based on comparative genomic analysis. J. Microbiol. Biotechnol. 31: 298-303.  https://doi.org/10.4014/jmb.2011.11022
  17. AOAC. 1990. Official methods of analysis 15th ed. AOAC, Washington, DC. 
  18. Park JS, Lee MY, Kim JS, Lee TS. 1994. Compositions of nitrogen compound and amino acid in soybean paste (Doenjang) prepared with different microbial sources. Korean J. Food Sci. Technol. 26: 609-615.