DOI QR코드

DOI QR Code

Effect of Sodium Hypochlorite on the Biofilms of Aeromonas hydrophila, Streptococcus mutans, and Yersinia enterocolitica

  • Youngseok Ham (Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University) ;
  • Han-Saem Park (Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University) ;
  • Minjun Kim (Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University) ;
  • Tae-Jong Kim (Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University)
  • Received : 2022.09.29
  • Accepted : 2023.01.08
  • Published : 2023.03.28

Abstract

In this study, the effect of sodium hypochlorite on biofilm removal was evaluated using three bacterial strains; Aeromonas hydrophila, Streptococcus mutans, and Yersinia enterocolitica. For maximum biofilm removal in 10 min, sodium hypochlorite is required at 1.65, 0.83, and 0.41 g/l for A. hydrophila, S. mutans, and Y. enterocolitica, respectively. Resistance to sodium hypochlorite was increased by the biofilms of all three tested strains, while the change in bactericidal activity according to sodium hypochlorite concentration was strain-specific. Therefore, we aimed to determine the effective concentration of sodium hypochlorite required for hygiene, considering that higher concentrations are needed to remove biofilms than to kill cells.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF), a grant funded by the Korean government (MSIT) (No. 2021R1F1A1061888).

References

  1. McAuliffe L, Ellis RJ, Miles K, Ayling RD, Nicholas RAJ. 2006. Biofilm formation by mycoplasma species and its role in environmental persistence and survival. Microbiology 152: 913-922. https://doi.org/10.1099/mic.0.28604-0
  2. Gandhi M, Chikindas ML. 2007. Listeria: A foodborne pathogen that knows how to survive. Int. J. Food Microbiol. 113: 1-15. https://doi.org/10.1016/j.ijfoodmicro.2006.07.008
  3. Lagace L, Jacques M, Mafu AA, Roy D. 2006. Biofilm formation and biocides sensitivity of Pseudomonas marginalis isolated from a maple sap collection system. J. Food Protect. 69: 2411-2416. https://doi.org/10.4315/0362-028X-69.10.2411
  4. Olson ME, Ceri H, Morck DW, Buret AG, Read RR. 2002. Biofilm bacteria: Formation and comparative susceptibility to antibiotics. Can. J. Vet. Res. 66: 86-92.
  5. Holah JT, Higgs C, Robinson S, Worthington D, Spenceley H. 1990. A conductance-based surface disinfection test for food hygiene. Lett. Appl. Microbiol. 11: 255-259. https://doi.org/10.1111/j.1472-765X.1990.tb00175.x
  6. Morton HE. 1950. The relationship of concentration and germicidal efficiency of ethyl alcohol. Ann. NY Acad. Sci. 53: 191-196. https://doi.org/10.1111/j.1749-6632.1950.tb31944.x
  7. Block SS (ed). 2001. Disinfection, sterilization, and preservation. Lippincott Williams & Wilkins, Philadelphia, PA, USA.
  8. Ackoundou-N'guessan C, Heng A-E, Guenu S, Charbonne F, Traore O, Deteix P, et al. 2006. Ethanol lock solution as an adjunct treatment for preventing recurrent catheter-related sepsis-first case report in dialysis setting. Nephrol. Dial. Transpl. 21: 3339-3340. https://doi.org/10.1093/ndt/gfl358
  9. Ali Y, Dolan MJ, Fendler EJ, Larson EL. 2001. Alcohols, pp. 229-253. In Block SS (ed.), Disinfection, sterilization, and preservation, 5th Ed. Lippincott Williams & Wilkins, Philadelphia, PA, USA.
  10. Park H-S, Ham Y, Shin K, Kim Y-S, Kim T-J. 2015. Sanitizing effect of ethanol against biofilms formed by three Gram-negative pathogenic bacteria. Curr. Microbiol. 71: 70-75. https://doi.org/10.1007/s00284-015-0828-4
  11. Daskalov H. 2006. The importance of Aeromonas hydrophila in food safety. Food Control 17: 474-483. https://doi.org/10.1016/j.foodcont.2005.02.009
  12. Khalil MAM, Rehman A, Kashif WU, Rangasami M, Tan J. 2013. A rare case of Aeromonas hydrophila catheter related sepsis in a patient with chronic kidney disease receiving steroids and dialysis: A case report and review of Aeromonas infections in chronic kidney disease patients. Case Rep. Nephrol. 2013: 735194.
  13. Jahid IK, Ha S-D. 2014. Inactivation kinetics of various chemical disinfectants on Aeromonas hydrophila planktonic cells and biofilms. Foodborne Pathog. Dis. 11: 346-353. https://doi.org/10.1089/fpd.2013.1682
  14. Loesche WJ. 1986. Role of Streptococcus mutans in human dental decay. Microbiol. Rev. 50: 353-380. https://doi.org/10.1128/mr.50.4.353-380.1986
  15. Ofek I, Hasty DL, Sharon N. 2003. Anti-adhesion therapy of bacterial diseases: prospects and problems. FEMS Immunol. Med. Microbiol. 38: 181-191. https://doi.org/10.1016/S0928-8244(03)00228-1
  16. Abdel-Haq NM, Asmar BI, Abuhammour WM, Brown WJ. 2000. Yersinia enterocolitica infection in children. Pediatr. Infect. Dis. J. 19: 954-958. https://doi.org/10.1097/00006454-200010000-00002
  17. Kim T-J, Young BM, Young GM. 2008. Effect of flagellar mutations on Yersinia enterocolitica biofilm formation. Appl. Environ. Microbiol. 74: 5466-5474. https://doi.org/10.1128/AEM.00222-08
  18. Kirov SM, Castrisios M, Shaw JG. 2004. Aeromonas flagella (polar and lateral) are enterocyte adhesins that contribute to biofilm formation on surfaces. Infect. Immun. 72: 1939-1945. https://doi.org/10.1128/IAI.72.4.1939-1945.2004
  19. Ham Y, Kim T-J. 2019. Conditions for preparing Glycyrrhiza uralensis extract for inhibiting biofilm formation of Streptococcus mutans. J. Korean Wood Sci. Technol. 47: 178-188. https://doi.org/10.5658/WOOD.2019.47.2.178
  20. Mainous ME, Kuhn DD, Smith SA. 2011. Efficacy of common aquaculture compounds for disinfection of Aeromonas hydrophila, A. salmonicida subsp. salmonicida, and A. salmonicida subsp. achromogenes at various temperatures. N. Am. J. Aquacult. 73: 456-461. https://doi.org/10.1080/15222055.2011.630265
  21. Paz ML, Duaigues MVG, Hanashiro A, D'Aquino M, Santini P. 1993. Antimicrobial effect of chlorine on Yersinia enterocolitica. J. Appl. Bacteriol. 75: 220-225. https://doi.org/10.1111/j.1365-2672.1993.tb02769.x