DOI QR코드

DOI QR Code

Genetic Algorithm-based Optimal Placement and Size Determination Methods of BRBs That Consider Vertical Continuity for Seismic Retrofit of Steel Moment Frames

철골모멘트골조의 내진보강을 위한 수직 연속성을 고려한 유전자 알고리즘 기반 최적 비좌굴가새 위치 및 크기 결정 기법

  • Choi, Se-Woon (Dept. of Architectural Engineering, Daegu Catholic University) ;
  • Kim, Yousok (School of Architectural Engineering, Hongik University)
  • 최세운 (대구가톨릭대학교 건축공학과) ;
  • 김유석 (홍익대학교 건축공학부)
  • Received : 2023.02.25
  • Accepted : 2023.03.24
  • Published : 2023.04.30

Abstract

In this study, the genetic algorithm-based optimal seismic retrofit method using buckling restrained braces (BRBs) for existing steel frames was presented to simultaneously minimize the two conflicting objective functions of initial retrofit cost and lifecycle cost. Method 1 provided the BRB placements and sizes and was applied to a nine-story steel frame; the effectiveness of the retrofit schemes obtained was then investigated. Although it is important to ensure the vertical continuity of BRBs for preventing soft and weak stories, little research has been reported on the optimal seismic retrofit method to suggest the installation placements and sizes of BRBs. Therefore, an additional optimal seismic retrofit method was proposed to enforce the vertical continuity of BRBs. The results indicated that the proposed methods were more effective than the conventional retrofit method, and in some retrofit schemes, the vertical continuity condition incorporated into Method 2 presented greater initial retrofit costs than those of Method 1 to yield similar lifecycle costs.

Keywords

Acknowledgement

이 논문은 2020년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. NRF-2020R1F1A1076776)

References

  1. Aydin, E., & Boduroglu, M. H. (2008). Optimal placement of steel diagonal braces for upgrading the seismic capacity of existing structures and its comparison with optimal dampers, Journal of Constructional Steel Research, 64 (1), 72-86. https://doi.org/10.1016/j.jcsr.2007.04.005
  2. Bruneau, M., Uang, C. M., & Sabelli, R. (2011). Ductile design of steel structures. 2nd ed. New York (USA): McGraw-Hill.
  3. Chi, B., Uang, C. M., & Chen, A. (2006). Seismic rehabilitation of pre-Northridge steel moment connections: A case study, Journal of Constructional Steel Research, 62(8), 783-92. https://doi.org/10.1016/j.jcsr.2005.11.001
  4. Choi, S. W., Kim, Y., & Park, H. S. (2014). Multi-objective seismic retrofit method for using FRP jackets in shear-critical reinforced concrete frames, Composite: Part B, 56, 207-216. https://doi.org/10.1016/j.compositesb.2013.08.049
  5. Chou, C. C., Tsai, K. C., Wang, Y. Y., & Jao, C. K. (2010). Seismic rehabilitation performance of steel side plate moment connections, Earthquake Engineering and Structural Dynamics, 39 (1), 23-44. https://doi.org/10.1002/eqe.931
  6. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6(2), 182-197. https://doi.org/10.1109/4235.996017
  7. Di Sarno, L., & Elnashai, A. S. (2009). Bracing systems for seismic retrofitting of steel frames, Journal of Constructional Steel Research, 65(2), 452-465. https://doi.org/10.1016/j.jcsr.2008.02.013
  8. Di Sarno, L., & Elnashai, A. S. (2002). Seismic retrofitting of steel and composite building structures. Mid-America earthquake center report, CD Release 02-01. IL (USA): University of Illinois at Urbana-Champaign.
  9. Di Sarno, L., & Manfredi, G. (2012). Experimental tests on full-scale RC unretrofitted frame and retrofitted with buckling-restrained braces, Earthquake Engineering and Structural Dynamics, 41(2), 315-333. https://doi.org/10.1002/eqe.1131
  10. Farhat, F., & Nakamura, S. (2009). Application of genetic algorithm to optimization of buckling restrained braces for seismic upgrading of existing structures, Computers and Structures, 87(1-2), 110-119. https://doi.org/10.1016/j.compstruc.2008.08.002
  11. FEMA. (2000). Recommended seismic evaluation and upgrade criteria for existing welded steel moment-frame buildings (FEMA 351). Washington: Federal Emergency Management Agent.
  12. Fragiadakis, M., Lagaros, N. D., & Papadrakakis, M. (2006). Performance-based multiobjective optimum design of steel structures considering life-cycle cost, Structural and Multidisciplinary Optimization, 32(1), 1-11. https://doi.org/10.1007/s00158-006-0009-y
  13. Guneyisi, E. M. (2012). Seismic reliability of steel moment resisting framed buildings retrofitted buckling restrained braces, Earthquake Engineering and Structural Dynamics, 41(5), 853-874. https://doi.org/10.1002/eqe.1161
  14. Liu, M., Burns, S. A., & Wen, Y. K. (2003). Optimal seismic design of steel frame buildings based on life cycle cost considerations, Earthquake Engineering and Structural Dynamics, 32(9), 1313-1332. https://doi.org/10.1002/eqe.273
  15. Mashin, S. A. (1998). Lessons from damage to steel buildings during the Northridge earthquake, Engineering Structures, 20(4-6), 261-270. https://doi.org/10.1016/S0141-0296(97)00032-1
  16. Seismology Committee Structural Engineers Association of California. (1999). Recommended lateral force requirements and commentary. 7th ed. California.
  17. Wen, Y. K., & Kang, Y. J. (2001). Minimum building life-cycle cost design criteria II: applications, Journal of Structural Engineering, 127(3), 338-346. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:3(338)
  18. Xie, Q. (2005). State of the art of buckling-restrained braces in Asia, Journal of Constructional Steel Research, 61, 727-748. https://doi.org/10.1016/j.jcsr.2004.11.005