Acknowledgement
이 논문은 2020년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. NRF-2020R1F1A1076776)
References
- Aydin, E., & Boduroglu, M. H. (2008). Optimal placement of steel diagonal braces for upgrading the seismic capacity of existing structures and its comparison with optimal dampers, Journal of Constructional Steel Research, 64 (1), 72-86. https://doi.org/10.1016/j.jcsr.2007.04.005
- Bruneau, M., Uang, C. M., & Sabelli, R. (2011). Ductile design of steel structures. 2nd ed. New York (USA): McGraw-Hill.
- Chi, B., Uang, C. M., & Chen, A. (2006). Seismic rehabilitation of pre-Northridge steel moment connections: A case study, Journal of Constructional Steel Research, 62(8), 783-92. https://doi.org/10.1016/j.jcsr.2005.11.001
- Choi, S. W., Kim, Y., & Park, H. S. (2014). Multi-objective seismic retrofit method for using FRP jackets in shear-critical reinforced concrete frames, Composite: Part B, 56, 207-216. https://doi.org/10.1016/j.compositesb.2013.08.049
- Chou, C. C., Tsai, K. C., Wang, Y. Y., & Jao, C. K. (2010). Seismic rehabilitation performance of steel side plate moment connections, Earthquake Engineering and Structural Dynamics, 39 (1), 23-44. https://doi.org/10.1002/eqe.931
- Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6(2), 182-197. https://doi.org/10.1109/4235.996017
- Di Sarno, L., & Elnashai, A. S. (2009). Bracing systems for seismic retrofitting of steel frames, Journal of Constructional Steel Research, 65(2), 452-465. https://doi.org/10.1016/j.jcsr.2008.02.013
- Di Sarno, L., & Elnashai, A. S. (2002). Seismic retrofitting of steel and composite building structures. Mid-America earthquake center report, CD Release 02-01. IL (USA): University of Illinois at Urbana-Champaign.
- Di Sarno, L., & Manfredi, G. (2012). Experimental tests on full-scale RC unretrofitted frame and retrofitted with buckling-restrained braces, Earthquake Engineering and Structural Dynamics, 41(2), 315-333. https://doi.org/10.1002/eqe.1131
- Farhat, F., & Nakamura, S. (2009). Application of genetic algorithm to optimization of buckling restrained braces for seismic upgrading of existing structures, Computers and Structures, 87(1-2), 110-119. https://doi.org/10.1016/j.compstruc.2008.08.002
- FEMA. (2000). Recommended seismic evaluation and upgrade criteria for existing welded steel moment-frame buildings (FEMA 351). Washington: Federal Emergency Management Agent.
- Fragiadakis, M., Lagaros, N. D., & Papadrakakis, M. (2006). Performance-based multiobjective optimum design of steel structures considering life-cycle cost, Structural and Multidisciplinary Optimization, 32(1), 1-11. https://doi.org/10.1007/s00158-006-0009-y
- Guneyisi, E. M. (2012). Seismic reliability of steel moment resisting framed buildings retrofitted buckling restrained braces, Earthquake Engineering and Structural Dynamics, 41(5), 853-874. https://doi.org/10.1002/eqe.1161
- Liu, M., Burns, S. A., & Wen, Y. K. (2003). Optimal seismic design of steel frame buildings based on life cycle cost considerations, Earthquake Engineering and Structural Dynamics, 32(9), 1313-1332. https://doi.org/10.1002/eqe.273
- Mashin, S. A. (1998). Lessons from damage to steel buildings during the Northridge earthquake, Engineering Structures, 20(4-6), 261-270. https://doi.org/10.1016/S0141-0296(97)00032-1
- Seismology Committee Structural Engineers Association of California. (1999). Recommended lateral force requirements and commentary. 7th ed. California.
- Wen, Y. K., & Kang, Y. J. (2001). Minimum building life-cycle cost design criteria II: applications, Journal of Structural Engineering, 127(3), 338-346. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:3(338)
- Xie, Q. (2005). State of the art of buckling-restrained braces in Asia, Journal of Constructional Steel Research, 61, 727-748. https://doi.org/10.1016/j.jcsr.2004.11.005