DOI QR코드

DOI QR Code

The CCAAT-box transcription factor, NF-Y complex, mediates the specification of the IL1 neurons in C. elegans

  • Woojung Heo (Department of Brain Sciences, DGIST) ;
  • Hyeonjeong Hwang (Department of Brain Sciences, DGIST) ;
  • Jimin Kim (Department of Brain Sciences, DGIST) ;
  • Seung Hee Oh (Department of Brain Sciences, DGIST) ;
  • Youngseok Yu (Department of Life and Nanopharmaceutical Sciences, Kyung Hee University) ;
  • Jae-Hyung Lee (Department of Life and Nanopharmaceutical Sciences, Kyung Hee University) ;
  • Kyuhyung Kim (Department of Brain Sciences, DGIST)
  • Received : 2022.09.16
  • Accepted : 2022.10.27
  • Published : 2023.03.31

Abstract

Neuronal differentiation is highly coordinated through a cascade of gene expression, mediated via interactions between trans-acting transcription factors and cis-regulatory elements of their target genes. However, the mechanisms of transcriptional regulation that determine neuronal cell-fate are not fully understood. Here, we show that the nuclear transcription factor Y (NF-Y) subunit, NFYA-1, is necessary and sufficient to express the flp-3 neuropeptide gene in the IL1 neurons of C. elegans. flp-3 expression is decreased in dorsal and lateral, but not ventral IL1s of nfya-1 mutants. The expression of another terminally differentiated gene, eat-4 vesicular glutamate transporter, is abolished, whereas the unc-8 DEG/ENaC gene and pan-neuronal genes are expressed normally in IL1s of nfya-1 mutants. nfya-1 is expressed in and acts in IL1s to regulate flp-3 and eat-4 expression. Ectopic expression of NFYA-1 drives the expression of flp-3 gene in other cell-types. Promoter analysis of IL1-expressed genes results in the identification of several cis-regulatory motifs which are necessary for IL1 expression, including a putative CCAAT-box located in the flp-3 promoter that NFYA-1 directly interacts with. NFYA-1 and NFYA-2, together with NFYB-1 and NFYC-1, exhibit partly or fully redundant roles in the regulation of flp-3 or unc-8 expression, respectively. Taken together, our data indicate that the NF-Y complex regulates neuronal subtype-specification via regulating a set of terminal-differentiation genes.

Keywords

Acknowledgement

We thank the Caenorhabditis Genetics Center (NIH Office of Research Infrastructure Programs, P40 OD010440) and the National BioResource Project (Japan) for strains. We also thank Jinmahn Kim and Ji-Won Lee for technical supports and K. Kim lab members for helpful comments and discussion on the manuscript. This work was supported by the National Research Foundation of Korea (NRF-2020R1A4A1019436, NRF-2021R1A2C1008418) (K.K.) and (2022R1F1A1071248) (J.L.).

References

  1. Scott-Solomon E, Boehm E and Kuruvilla R (2021) The sympathetic nervous system in development and disease. Nat Rev Neurosci 22, 685-702  https://doi.org/10.1038/s41583-021-00523-y
  2. Hobert O (2008) Regulatory logic of neuronal diversity: terminal selector genes and selector motifs. Proc Natl Acad Sci U S A 105, 20067-20071  https://doi.org/10.1073/pnas.0806070105
  3. Hobert O and Kratsios P (2019) Neuronal identity control by terminal selectors in worms, flies, and chordates. Curr Opin Neurobiol 56, 97-105  https://doi.org/10.1016/j.conb.2018.12.006
  4. Sulston JE, Schierenberg E, White JG and Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100, 64-119  https://doi.org/10.1016/0012-1606(83)90201-4
  5. Hobert O, Glenwinkel L and White J (2016) Revisiting neuronal cell type classification in Caenorhabditis elegans. Curr Biol 26, 1197-1203  https://doi.org/10.1016/j.cub.2016.10.027
  6. Hobert O (2016) Terminal Selectors of Neuronal Identity. Curr Top Dev Biol 116, 455-475  https://doi.org/10.1016/bs.ctdb.2015.12.007
  7. Leyva-Diaz E, Masoudi N, Serrano-Saiz E, Glenwinkel L and Hobert O (2020) Brn3/POU-IV-type POU homeobox genes-Paradigmatic regulators of neuronal identity across phylogeny. Wiley Interdiscip Rev Dev Biol 9, e374 
  8. Hobert O (2021) Homeobox genes and the specification of neuronal identity. Nat Rev Neurosci 22, 627-636  https://doi.org/10.1038/s41583-021-00497-x
  9. Hobert O (2011) Maintaining a memory by transcriptional autoregulation. Curr Biol 21, 146-147  https://doi.org/10.1016/j.cub.2011.01.005
  10. White JG, Southgate E, Thomson JN and Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314, 1-340  https://doi.org/10.1098/rstb.1986.0056
  11. Moon KM, Kim J, Seong Y et al (2021) Proprioception, the regulator of motor function. BMB Rep 54, 393-402  https://doi.org/10.5483/BMBRep.2021.54.8.052
  12. Hart AC, Sims S and Kaplan JM (1995) Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor. Nature 378, 82-85  https://doi.org/10.1038/378082a0
  13. Vidal B, Santella A, Serrano-Saiz E, Bao Z, Chuang CF and Hobert O (2015) C. elegans SoxB genes are dispensable for embryonic neurogenesis but required for terminal differentiation of specific neuron types. Development 142, 2464-2477  https://doi.org/10.1242/dev.125740
  14. Reilly MB, Cros C, Varol E, Yemini E and Hobert O (2020) Unique homeobox codes delineate all the neuron classes of C. elegans. Nature 584, 595-601  https://doi.org/10.1038/s41586-020-2618-9
  15. Masoudi N, Yemini E, Schnabel R and Hobert O (2021) Piecemeal regulation of convergent neuronal lineages by bHLH transcription factors in Caenorhabditis elegans. Development 148, dev119224 
  16. Kim K and Li C (2004) Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. J Comp Neurol 475, 540-550  https://doi.org/10.1002/cne.20189
  17. Franchini A, Imbriano C, Peruzzi E, Mantovani R and Ottaviani E (2005) Expression of the CCAAT-binding factor NF-Y in Caenorhabditis elegans. J Mol Histol 36, 139-145  https://doi.org/10.1007/s10735-004-6017-6
  18. Deng H, Sun Y, Zhang Y et al (2007) Transcription factor NFY globally represses the expression of the C. elegans Hox gene Abdominal-B homolog egl-5. Dev Biol 308, 583-592  https://doi.org/10.1016/j.ydbio.2007.05.021
  19. Milton AC, Packard AV, Clary L and Okkema PG (2013) The NF-Y complex negatively regulates Caenorhabditis elegans tbx-2 expression. Dev Biol 382, 38-47  https://doi.org/10.1016/j.ydbio.2013.08.001
  20. Nardini M, Gnesutta N, Donati G et al (2013) Sequence-specific transcription factor NF-Y displays histone-like DNA binding and H2B-like ubiquitination. Cell 152, 132-143  https://doi.org/10.1016/j.cell.2012.11.047
  21. C. elegans Deletion Mutant Consortium (2012) Large-scale screening for targeted knockouts in the caenorhabditis elegans genome. G3 (Bethesda) 2, 1415-1425  https://doi.org/10.1534/g3.112.003830
  22. Serrano-Saiz E, Poole RJ, Felton T, Zhang F, De La Cruz ED and Hobert O (2013) Modular control of glutamatergic neuronal identity in C. elegans by distinct homeodomain proteins. Cell 155, 659-673  https://doi.org/10.1016/j.cell.2013.09.052
  23. Tavernarakis N, Shreffler W, Wang S and Driscoll M (1997) unc-8, a DEG/ENaC family member, encodes a subunit of a candidate mechanically gated channel that modulates C. elegans locomotion. Neuron 18, 107-119  https://doi.org/10.1016/S0896-6273(01)80050-7
  24. Maduro M and Pilgrim D (1995) Identification and cloning of unc-119, a gene expressed in the Caenorhabditis elegans nervous system. Genetics 141, 977-988  https://doi.org/10.1093/genetics/141.3.977
  25. Kratsios P, Stolfi A, Levine M and Hobert O (2011) Coordinated regulation of cholinergic motor neuron traits through a conserved terminal selector gene. Nat Neurosci 15, 205-214  https://doi.org/10.1038/nn.2989
  26. Hurd DD, Miller RM, Nunez L and Portman DS (2010) Specific alpha- and beta-tubulin isotypes optimize the functions of sensory Cilia in Caenorhabditis elegans. Genetics 185, 883-896  https://doi.org/10.1534/genetics.110.116996
  27. Fire A, Harrison SW and Dixon D (1990) A modular set of lacZ fusion vectors for studying gene expression in Caenorhabditis elegans. Gene 93, 189-198  https://doi.org/10.1016/0378-1119(90)90224-F
  28. Kim J, Yeon J, Choi SK et al (2015) The evolutionarily conserved LIM homeodomain protein LIM-4/LHX6 specifies the terminal identity of a cholinergic and peptidergic C. elegans sensory/inter/motor neuron-type. PLoS Genet 11, e1005480 
  29. Hammarlund M, Hobert O, Miller DM 3rd and Sestan N (2018) The CeNGEN project: the complete gene expression map of an entire nervous system. Neuron 99, 430-433  https://doi.org/10.1016/j.neuron.2018.07.042
  30. Oh M, Kim SY, Byun JS et al (2021) Depletion of Janus kinase-2 promotes neuronal differentiation of mouse embryonic stem cells. BMB Rep 54, 626-631  https://doi.org/10.5483/BMBRep.2021.54.12.154
  31. Dolfini D, Gatta R and Mantovani R (2012) NF-Y and the transcriptional activation of CCAAT promoters. Crit Rev Biochem Mol Biol 47, 29-49  https://doi.org/10.3109/10409238.2011.628970
  32. Benatti P, Chiaramonte ML, Lorenzo M et al (2016) NF-Y activates genes of metabolic pathways altered in cancer cells. Oncotarget 7, 1633-1650  https://doi.org/10.18632/oncotarget.6453
  33. Ly LL, Suyari O, Yoshioka Y, Tue NT, Yoshida H and Yamaguchi M (2013) dNF-YB plays dual roles in cell death and cell differentiation during Drosophila eye development. Gene 520, 106-118  https://doi.org/10.1016/j.gene.2013.02.036
  34. Yamaguchi M, Ali MS, Yoshioka Y, Ly LL and Yoshida H (2017) NF-Y in invertebrates. Biochim Biophys Acta Gene Regul Mech 1860, 630-635  https://doi.org/10.1016/j.bbagrm.2016.10.008
  35. Dorn A, Bollekens J, Staub A, Benoist C and Mathis D (1987) A multiplicity of CCAAT box-binding proteins. Cell 50, 863-872  https://doi.org/10.1016/0092-8674(87)90513-7
  36. Martyn GE, Quinlan KGR and Crossley M (2017) The regulation of human globin promoters by CCAAT box elements and the recruitment of NF-Y. Biochim Biophys Acta Gene Regul Mech 1860, 525-536 https://doi.org/10.1016/j.bbagrm.2016.10.002