Acknowledgement
이 연구는 전남대학교 학술연구비(과제번호: 2022-2664), 그리고 2022년도 과학기술정보통신부의 재원으로 한국연구재단(No. RS-2022-00165723), 정보통신산업진흥원(No. ITAS03182201100200010 00100100)의 지원을 받아 수행되었기에 감사를 표합니다.
References
- ANSI/ASHRAE/IES. (2019). ANSI/ASHRAE/IES Standard 90.1-2019: Energy standard for buildings except low-riseresidential buildings, Atlanta, GA, ASHRAE
- Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate, International Conference on Learning Representations (ICLR) 2015, doi:10.48550/arXiv.1409.0473
- Baek, J. Y., Min, S. W., Baek, D. H., & Chang, S. J. (2021). LSTM-based prediction of building power consumption with PCA based data dimension change - Centered on a campus building in Daejeon, Journal of the Architectural Institute of Korea, 37(9), 137-144, doi:10.5659/JAIK.2021.37.9.137
- Elman, J. (1990). Finding structure in time, Cognitive Science, 14, 179-211, doi:10.1016/0364-0213(90)90002-E
- EnergyPlus. (2022). Weather data by location: Chicago-O' Hare International Airport 725300 (TMY3), Retrieved August 10, 2022 from https://energyplus.net/weather-location/north_and_central_america_wmo_region_4/USA/IL/USA_IL_Chicago-OHare.Intl.AP.725300_TMY3
- Fan, C., Wang, J., Gang, W., & Li, S. (2019). Assessment of deep recurrent neural network-based strategies for short-term building energy predictions, Applied Energy, 236, 700-710, doi:10.1016/j.apenergy.2018.12.004
- Helbing, G., & Ritter, M. (2018). Deep learning for fault detection in wind turbines, Renewable and Sustainable Energy Reviews, 98, 189-98, doi:10.1016/j.rser.2018.09.012
- Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory, Neural Computation, 9, 1735-1780, doi:10.1162/neco.1997.9.8.1735
- Lu, R., & Hong, S. H. (2019). Incentive-based demand response for smart grid with reinforcement learning and deep neural network, Applied Energy, 236, 937-949, doi:10.1016/j.apenergy.2018.12.061
- Li, A., Xiao, F., Zhang, C., & Fan, C. (2021). Attention-based interpretable neural network for building cooling load prediction. Applied Energy, 299, 117238, doi:10.1016/j.apenergy.2021.117238
- Lim, B., Arik, S., Loeff, N., & Pfister, T. (2021). Temporal Fusion Transformers for interpretable multi-horizon time series forecasting, International Journal of Forecast, 37, 1748-1764. doi:10.1016/j.ijforecast.2021.03.012
- U.S. Department of Energy. (2012). Commercial reference buildings - New construction, Retrieved August 10, 2022 from https://www.energy.gov/eere/buildings/new-construction-commercial-reference-buildings
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., Polosukhin, I., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30. doi:10.48550/arXiv.1706.03762