Acknowledgement
이 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단 (No. 2021R1F1A1063338) 및 국토교통부/국토교통과학기술진흥원 (과제번호: 21CTAP-C163631-01)의 지원을 받아 수행된 연구임
References
- Brackenbury, D., Brilakis, I., & DeJong, M. (2019). Automated defect detection for masonry arch bridges. In International Conference on Smart Infrastructure and Construction 2019 (ICSIC) Driving data-informed decision-making, 3-9.
- Cha, Y. J., Choi, W., & Buyukozturk, O. (2017). Deep learning-based crack damage detection using convolutional neural networks. Computer-Aided Civil and Infrastructure Engineering, 32(5), 361-378. https://doi.org/10.1111/mice.12263
- Chaiyasarn, K., Sharma, M., Ali, L., Khan, W., & Poovarodom, N. (2018). Crack detection in historical structures based on convolutional neural network. GEOMATE Journal, 15(51), 240-251. https://doi.org/10.21660/2018.51.35376
- Dais, D., Bal, I. E., Smyrou, E., & Sarhosis, V. (2021). Automatic crack classification and segmentation on masonry surfaces using convolutional neural networks and transfer learning. Automation in Construction, 125, 103606.
- Hallee, M. J., Napolitano, R. K., Reinhart, W. F., & Glisic, B. (2021). Crack detection in images of masonry using cnns. Sensors, 21(14), 4929.
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 770-778.
- Jung, S. Y., Lee, S. K., Park, C. I., Cho, S. Y., & Yu, J. H. (2019). A method for detecting concrete cracks using deep-learning and image processing. Journal of the Architectural Institute of Korea Structure & Construction, 35(11), 163-170.
- Kaya, E., & Sert, E. (2020). A new 3D segmentation approach using extreme learning machine algorithm and morphological operations. Computers & Electrical Engineering, 84, 106638.
- Kim, A. R., Kim, D., Byun, Y. S., & Lee, S. W. (2018). Crack detection of concrete structure using deep learning and image processing method in geotechnical engineering. Journal of the korean geotechnical society, 34(12), 145-154. https://doi.org/10.7843/KGS.2018.34.12.145
- Kim, B., Kim, G., Jin, S., & Cho, S. (2019). A comparative study on performance of deep learning models for vision-based concrete crack detection according to model types. Journal of the Korean Society of Safety, 34(6), 50-57. https://doi.org/10.14346/JKOSOS.2019.34.6.50
- Kim, J., Shin, Y. S., & Min, K. W. (2018). Line laser image processing for automated crack detection of concrete structures. Journal of the Computational Structural Engineering Institute of Korea, 31(3), 147-153. https://doi.org/10.7734/COSEIK.2018.31.3.147
- Kim, S. M., Sohn, J. M., & Kim, D. S. (2020). A method for concrete crack detection using U-Net based image inpainting technique. Journal of the Korea Society of Computer and Information, 25(10), 35-42. https://doi.org/10.9708/JKSCI.2020.25.10.035
- Kim, T. Y., Jeon, B. O., & Lee, M. K. (2008). A Study on the Defect Characteristics of Masonry Building in Modern Age of Korea. Journal of the Architectural Institute of Korea Structure & Construction, 24(5), 117-124.
- Kwon, K. H. (2005). An Analysis on the Correlation between Crack Condition and Safety Grades in Masonry Buildings. Journal of the Korea institute for structural maintenance and inspection, 9(3), 101-110.
- Lourenco, F., & Araujo, H. (2021, February). Intel RealSense SR305, D415 and L515: Experimental Evaluation and Comparison of Depth Estimation. In VISIGRAPP (4: VISAPP), 362-369.
- Loverdos, D., & Sarhosis, V. (2022). Automatic image-based brick segmentation and crack detection of masonry walls using machine learning. Automation in Construction, 140, 104389.
- Park, Y. S. (2020). Masonry Structures Inspection & Maintenancep Guide (Focusing on masonry wall cracks). Korea Authority of Land & Infrastructure Safety, Retrieved on June 30, 2022 from http://www.kalis.or.kr
- Raj, T., Hanim Hashim, F., Baseri Huddin, A., Ibrahim, M. F., & Hussain, A. (2020). A survey on LiDAR scanning mechanisms. Electronics, 9(5), 741.
- Samy, M. P., Foong, S., Soh, G. S., & Yeo, K. S. (2016, November). Automatic optical & laser-based defect detection and classification in brick masonry walls. In 2016 IEEE Region 10 Conference (TENCON), 3521-3524.
- Seol, D. H., Oh, J. H., & Kim, H. J. (2020). Comparison of deep learning-based CNN models for crack detection. Journal of the Architectural Institute of Korea Structure & Construction, 36(3), 113-120.
- Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
- Syed, A. Q., Jothi, J. A. A., & Anusree, K. (2022, February). Crack identification from concrete structure images using deep transfer learning. In2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP), 1-7.
- Valero, E., Forster, A., Bosche, F., Wilson, L., & Leslie, A. (2016, September). Comparison of 3D Reality Capture Technologies for the Survey of Stone Walls. In Arqueologica 2.0: 8th International Congress on Archaeology, Computer Graphics, Cultural Heritage and Innovation.
- Valero, E., Bosche, F., & Forster, A. (2018). Automatic segmentation of 3D point clouds of rubble masonry walls, and its application to building surveying, repair and maintenance. Automation in Construction, 96, 29-39. https://doi.org/10.1016/j.autcon.2018.08.018
- Valero, E., Forster, A., Bosche, F., Hyslop, E., Wilson, L., & Turmel, A. (2019). Automated defect detection and classification in ashlar masonry walls using machine learning. Automation in construction, 106, 102846.