DOI QR코드

DOI QR Code

Flexural Experiments on Reinforced Concrete Beams Strengthened with SHCC and Special Reinforcements

SHCC와 특수 보강근으로 보강된 철근콘크리트 보의 휨 성능 실험

  • 현창진 (충남대학교, 토목공학과) ;
  • 서지석 ((재)한국건설생활환경시험연구원) ;
  • 김윤용 (충남대학교, 토목공학과)
  • Received : 2022.11.13
  • Accepted : 2022.12.13
  • Published : 2023.02.28

Abstract

In this paper, we evaluated the flexural performance of three types of reinforced concrete beams (SHCC-RB, SHCC-SB, SHCC-FRP) strengthened with ordinary steel rebar, very high strength (super strength) rebar, and FRP bars together with strain-hardening cement composite (SHCC). For this purpose, a series of beam specimens were manufactured and four-point load bending experiments were performed. As a result of the experiment, all specimens strengthened with SHCC exhibited tightly controlled flexural microcrakcs with the crack width of less than 100 ㎛. This is mostly due to the material properties of SHCC showing tensile strain hardening properties with multiple microcracks under uniaxial tension. The specimen SHCC-FRP showed lower initial cracking moment and yield flexural strength than SHCC-RB, whereas the maximum flexural strength of SHCC-FRP was superior to that of SHCC-RC. This is because the tensile strength of FRP bars is higher than that of ordinary steel reabr. The initial cracking moment of the beam specimen SHCC-SB was similar to that of SHCC-RB, but the yield flexural strength and maximum flexural strength of SHCC-SB were evaluated to be the highest.

이 논문에서는 고인성 시멘트 복합체 SHCC와 함께 일반 철근, 초고강도 철근, FRP 보강근으로 보강된 3종류의 철근콘크리트 보(SHCC-RB, SHCC-SB, SHCC-FRP)의 휨 성능을 평가하기 위하여 보 실험체를 제작하고, 4점 재하 휨 실험을 수행하였다. 실험 결과, SHCC로 보강된 모든 실험체가 다수의 미세 균열이 발생하면서 휨 균열 폭이 100 ㎛ 이하로 제어되는 특성을 나타내었다. 이는 1축 인장 하에서 인장변형경화 특성을 보이며, 다중 미세균열 특성을 보이는 SHCC의 재료적 성질에 기인하는 것으로 판단된다. 실험체 SHCC-FRP는 실험체 SHCC-RB에 비하여 초기균열하중과 항복 휨모멘트강도가 낮은 반면, SHCC-FRP의 최대 휨모멘트강도는 SHCC-RC에 비하여 우수하게 나타났는데, 이는 FRP 보강근의 인장강도가 일반 철근에 비하여 더 높기 때문이다. 보 실험체 SHCC-SB의 초기균열 하중은 SHCC-RB와 유사하였으나, 항복 휨모멘트강도 및 최대 휨모멘트강도 측면에서는 SHCC-SB가 가장 우수한 것으로 평가되었다. SHCC와 초고강도 철근을 RC보의 보강에 활용하면 작은 단면적의 추가 배근으로도 효과적인 보강이 가능할 수 것으로 판단된다.

Keywords

Acknowledgement

이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2020R1A2C1101465).

References

  1. Metha, P. K., and Monteiro, P. M. (2009), Concrete-Structure, properties, and materials, 2nd edition, prentice Hall, New-Jersey, 113-171.
  2. Yoon, Y. S., Kim, T. H., Kwon, S. J. (2020). Evaluation of Chloride Diffusion Behavior and Analysis of Probabilistic Service Life in Long Term Aged GGBFS Concrete. Journal of the Korea Institute for Structural Maintenance and Inspection, 24(3), 47-56. (in Korean).
  3. Yoon, Y. S., Ryu, H. S., Lim, H. S., Koh, K. T., Kim, J. S., and Kwon, S. J. (2018), Effect of grout conditions and tendon location on corrosion pattern in PS tendon in grout. Construction and Building Materials, 186, 1005-1015. (in Korean). https://doi.org/10.1016/j.conbuildmat.2018.08.023
  4. Park, J. S., Park, K. T., Park, H. B., and Kim, B. C. (2018). Concrete Repair and Rehabilitation Code and Post-reinforcement Evaluation Technology. Magazine of the Korea Concrete Institute, 30(4), 21-26. (in Korean).
  5. Li, V. C., Wang, S., and Wu, C. (2001). Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC). ACI Materials Journal, 98(6), 483-492.
  6. Kim, Y. Y., Fischer, G., Lim, Y. M., and Li, V. C. (2004). Mechanical performance of sprayed engineered cementitious composite using wet-mix shotcreting process for repair applications. ACI Materials Journal, 101(1), 42-49.
  7. Choi, J. I., Lee, B. Y., and Kim, Y. Y. (2020). Material Strength and Deformation Performance of Highly Ductile High-Strength Cement Composite. Journal of the Korea Institute for Structural Maintenance and Inspection, 24(1), 51-58. (in Korean). https://doi.org/10.11112/JKSMI.2020.24.1.51
  8. Kwon, K. S., Bang, J. W., and Kim, Y. Y. (2018). Flexural Performance of Multi-layered Fiber-reinforced Cement Composites with Diverse Interface Shape. Journal of the Korea Concrete Institute, 30(4), 429-435. (in Korean).
  9. Cho, C. G., Kim, Y. Y., Feo, L., and Hui, D. (2012). Cyclic responses of reinforced concrete composite columns strengthened in the plastic hinge region by HPFRC mortar. Composite Structures, 94(7), 2246-2253. https://doi.org/10.1016/j.compstruct.2012.01.025
  10. Hyun, J. H., Bang, J. W., Lee, B. Y., and Kim, Y. Y. (2021). Effects of the Replacement Length of Concrete with ECC on the Cyclic Behavior of Reinforced Concrete Columns. Materials, 14(13), 3542.
  11. Qian, S., Lepech, M. D., Kim, Y. Y., and Li, V. C. (2009). Introduction of Transition Zone Design for Bridge Deck Link Slabs Using Ductile Concrete. ACI Structural Journal, 106(1).
  12. Prabhu, G. G., Sundarraja, M. C., and Kim, Y. Y. (2015). Compressive behavior of circular CFST columns externally reinforced using CFRP composites. Thin-Walled Structures, 87, 139-148. https://doi.org/10.1016/j.tws.2014.11.005
  13. Kim, Y. Y., Lee, B. Y., Bang, J. W., Han, B. C., Feo, L., & Cho, C. G. (2014). Flexural performance of reinforced concrete beams strengthened with strain-hardening cementitious composite and high strength reinforcing steel bar. Composites Part B: Engineering, 56, 512-519. https://doi.org/10.1016/j.compositesb.2013.08.069