Acknowledgement
이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2019R1A2C2086388).
References
- Ministry of Land, Infrastructure and Transport. (2022), Guidelines for safety and maintenance of infrastructures, Korea Ministry of Government Legislation. https://www.law.go.kr/
- Chang, C. F., and Chen, J. W. (2006). The experimental investigation of concrete carbonation depth, Cement and Concrete Research, 36(9), 1760-1767. https://doi.org/10.1016/j.cemconres.2004.07.025
- KS F 2385. (2018). Permeable asphalt mixtures, Korea Standards Association. https://e-ks.kr/streamdocs/view/sd;streamdocsId=7 2059199200454467
- Lu, S., Landis, E. N., and Keane, D. T. (2006). X-ray microtomographic studies of pore structure and permeability in Portland cement concrete, Materials and Structures, 39(6), 611-620. https://doi.org/10.1617/s11527-006-9099-7
- Torres-Luque, M., Bastidas-Arteaga, E., Schoefs, F., SanchezSilva, M., and Osma, J. F. (2014). Non-destructive methods for measuring chloride ingress into concrete: State-of-the-art and future challenges, Construction and Building Materials, 68, 68-81. https://doi.org/10.1016/j.conbuildmat.2014.06.009
- Hofmarcher, M., Unterthiner, T., Arjona-Medina, J., Klambauer, G., Hochreiter, S., & Nessler, B. (2019). Visual scene understanding for autonomous driving using semantic segmentation, Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, 285-296.
- Wang, G., Li, W., Zuluaga, M. A., Pratt, R., Patel, P. A., Aertsen, M., ... & Vercauteren, T. (2018). Interactive medical image segmentation using deep learning with image-specific fine tuning, IEEE Transactions on Medical Imaging, 37(7), 1562-1573. https://doi.org/10.1109/tmi.2018.2791721
- Dogan, G., Arslan, M. H., and Ceylan, M. (2017), Concrete compressive strength detection using image processing based new test method, Measurement, 109, 137-148. https://doi.org/10.1016/j.measurement.2017.05.051
- Jang, Y., Ahn, Y., and Kim, H. Y. (2019). Estimating compressive strength of concrete using deep convolutional neural networks with digital microscope images, Journal of Computing in Civil Engineering, 33(3), 04019018.
- Yang, H., Jiao, S. J., and Yin, F. D. (2020). Multilabel Image Classification Based Fresh Concrete Mix Proportion Monitoring Using Improved Convolutional Neural Network, Sensors, 20(16), 4638.
- Dung, C. V. (2019). Autonomous concrete crack detection using deep fully convolutional neural network, Automation in Construction, 99, 52-58. https://doi.org/10.1016/j.autcon.2018.11.028
- Otsu, N. (1979). A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66. https://doi.org/10.1109/TSMC.1979.4310076
- Dhanachandra, N., Manglem, K., and Chanu, Y. J. (2015). Image segmentation using K-means clustering algorithm and subtractive clustering algorithm, Procedia Computer Science, 54, 764-771. https://doi.org/10.1016/j.procs.2015.06.090
- Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for semantic segmentation, Proceedings of the IEEE conference on computer vision and pattern recognition, 3431-3440.
- Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation, International Conference on Medical image computing and computer-assisted intervention, Springer, Berlin, 234-241.
- Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2017). Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs, IEEE transactions on pattern analysis and machine intelligence, 40(4), 834-848. https://doi.org/10.1109/TPAMI.2017.2699184
- Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications, arXiv preprint arXiv, 1704.04861.
- Ahn, J., Lee, Y., Vaidya, S., Kim, J. H., & Lee, S. W. (2013). Estimation the porosity of pervious concretes based on X-Ray CT and submerged weight, Journal of the Korean Society of Hazard Mitigation, 13(4), 77-82. https://doi.org/10.9798/KOSHAM.2013.13.4.077
- Kumar, R., and Bhattacharjee, B. (2003). Porosity, pore size distribution and in situ strength of concrete, Cement and Concrete Research, 33(1), 155-164. https://doi.org/10.1016/S0008-8846(02)00942-0
- Nitto. Concrete tester and surveyor(User manual). (2009). Nitto, Osaka, Japan.
- KS F 2405. (2022). Test method for compressive strength of concrete, Korea Standards Association. https://e-ks.kr/streamdocs/ vIew/sd;streamdocsId=7205926579 6199707
- Liashchynskyi, P., and Liashchynskyi, P. (2019). Grid search, random search, genetic algorithm: A big comparison for NAS, arXiv preprint arXiv, 1912.06059.