DOI QR코드

DOI QR Code

Anti-misalignment capability optimization for laminated magnetic couplers in wireless charging systems using balanced particle swarm optimization method

  • Hao Liu (College of Mechanical and Electrical Engineering, Northeast Forestry University) ;
  • Zhenjie Li (College of Mechanical and Electrical Engineering, Northeast Forestry University) ;
  • Yuhong Tian (College of Mechanical and Electrical Engineering, Northeast Forestry University) ;
  • Yiqi Liu (College of Mechanical and Electrical Engineering, Northeast Forestry University) ;
  • Wenlong Song (College of Mechanical and Electrical Engineering, Northeast Forestry University)
  • Received : 2022.05.28
  • Accepted : 2022.09.15
  • Published : 2023.02.20

Abstract

To desensitize wireless charging systems (WCSs) to misalignment and to achieve a stable output voltage without using additional control methods, a laminated magnetic coupler (LMC) optimized by the balanced particle swarm optimization (BPSO) method is proposed to improve the performance of WCSs. First, the output characteristics of the LCC-S compensated WCS are analyzed to illustrate the working principle of the LMC. Next, the misalignment characteristics of the LMC, which employs the magnetic integration technique and coil self-decoupling method, are analyzed. Then, the operating principle of the BPSO method is analyzed and used to optimize the LMC in terms of the mutual inductance and anti-misalignment range. Finally, experimental results indicate that the optimized LMC achieves high-efficiency constant voltage charging within a reasonable horizontal misalignment range. When compared to commonly used methods (such as the exhaustive method) for optimizing magnetic couplers, the BPSO method avoids complex algorithms and a heavy computation burden.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant No. 52107001, in part by China Postdoctoral Science Foundation under Grant No. 2022M710641, and in part by Fundamental Research Funds for the Central Universities under Grant No. 2572021BF04.

References

  1. Zhang, Z., Pang, H., Georgiadis, A., Cecati, C.: Wireless power transfer-an overview. IEEE Trans. Ind. Electron. 66(2), 1044-1058 (2019) https://doi.org/10.1109/tie.2018.2835378
  2. Ahn, P., Mercier, P.: Investigation of multiple decoupled coil primary pad topologies in lumped IPT systems for interoperable electric vehicle charging. IEEE Trans. Power Electron. 31(7), 5018-5029 (2016) https://doi.org/10.1109/TPEL.2015.2480122
  3. Huang, S.H., Lee, T.S., Li, W.H., Chen, R.Y.: Modular on-road AGV wireless charging systems via interoperable power adjustment. IEEE Trans. Ind. Electron. 66(8), 5918-5928 (2019) https://doi.org/10.1109/tie.2018.2873165
  4. Tran, D.H., Vu, V.B., Choi, W.: Design of a high-efficiency wireless power transfer system with intermediate coils for the on-board chargers of electric vehicles. IEEE Trans. Power. Electron. 33(1), 175-187 (2018) https://doi.org/10.1109/TPEL.2017.2662067
  5. Yilmza, T., Hasan, Z., Zane, R., Pantic, Z.: Multi-objective optimization of circular magnetic couplers for wireless power transfer applications. IEEE Trans. Magn. 53(8), 8600312 (2017)
  6. Ye, Z.H., Sun, Y., Dai, X., Tang, C.S., Wang, Z.H., Su, Y.G.: Energy efficiency analysis of U-coil wireless power transfer system. IEEE Trans. Power Electron. 31(7), 4809-4817 (2016) https://doi.org/10.1109/TPEL.2015.2483839
  7. Alcolea, F.J.L., Real, J.C., Sanchez, P.R., Torres, A.P.: Modeling of a magnetic coupler based on single and double-layered rectangular planar coils with in-plane misalignment for wireless power transfer. IEEE Trans. Power Electron. 35(5), 5102-5121 (2020) https://doi.org/10.1109/tpel.2019.2944194
  8. Wang, S., Chen, J., Hu, Z., Rong, C., Liu, M.: Optimisation design for series-series dynamic WPT system maintaining stable transfer power. IET Power Electron. 10(9), 987-995 (2017) https://doi.org/10.1049/iet-pel.2016.0839
  9. Villa, J.L., Sallan, J., Sanz Osorio, J.F., Llombart, A.: High misalignment tolerant compensation topology for ICPT systems. IEEE Trans. Ind. Electron. 59(2), 945-951 (2012) https://doi.org/10.1109/TIE.2011.2161055
  10. Zhao, J., Cai, T., Duan, S., Feng, H., Chen, C., Zhang, X.: A general design method of primary compensation network for dynamic WPT system maintaining stable transmission power. IEEE Trans. Power Electron. 31(12), 8343-8358 (2016)
  11. Qu, X., Yao, Y., Wang, D., Wong, S.C., Tse, C.K.: Hybrid and reconfigurable IPT systems with high-misalignment tolerance for constant-current and constant-voltage battery charging. IEEE Trans. Power Electron. 35(7), 6867-6877 (2020) https://doi.org/10.1109/TPEL.2019.2955299
  12. Zhao, L., Thrimawithana, D.J., Madawala, U.K.: Hybrid bidirectional wireless E.V. charging system tolerant to pad misalignment. IEEE Trans. Ind. Electron. 64(9), 7079-7086 (2017) https://doi.org/10.1109/TIE.2017.2686301
  13. Wang, Y., Mai, J., Yao, Y., Xu, D.: Analysis and design of an IPT system based on S/SP compensation with improved output voltage regulation. IEEE Trans. Ind. Electron. 16(5), 3256-3266 (2020)
  14. Hou, J., Chen, Q., Wong, S., Tse, C.K., Ruan, X.: "Analysis and control of series/series-parallel compensated resonant converter for contactless power transfer," IEEE. J. Emerg. Sel. Topics. Power. Electron 3(1), 124-136 (2015) https://doi.org/10.1109/JESTPE.2014.2336811
  15. Chen, Y., Yang, B., Kou, Z., He, Z., Cao, G., Mai, R.: Hybrid and reconfigurable IPT systems with high-misalignment tolerance for constant-current and constant-voltage battery charging. IEEE Trans. Power Electron. 33(10), 8259-8269 (2018) https://doi.org/10.1109/TPEL.2018.2809785
  16. Zhang, Z., Chau, K.T.: Homogeneous wireless power transfer for move-and-charge. IEEE Trans. Power Electron. 30(11), 6213-6220 (2015) https://doi.org/10.1109/TPEL.2015.2414453
  17. Zheng, C., Ma, H., Lai, J.-S., Zhang, L.: Design considerations to reduce gap variation and misalignment effects for the inductive power transfer system. IEEE Trans. Power Electron. 30(11), 6108-6119 (2015) https://doi.org/10.1109/TPEL.2015.2424893
  18. Song, K., Yang, G., Guo, Y., Lan, Y., Dong, S., Jiang, J., Zhu, C.: Design of DD Coil with high misalignment tolerance and low EMF emissions for wireless electric vehicle charging systems. IEEE Trans. Power Electron. 35(9), 9034-9045 (2020) https://doi.org/10.1109/tpel.2020.2971967
  19. Lin, F.Y., Covic, G., Boys, J.: Evaluation of magnetic pad sizes and topologies for electric vehicle charging. IEEE Trans. Power Electron. 30(11), 6391-6407 (2015)
  20. Kim, S., Covic, G.A., Boys, J.T.: Tripolar pad for inductive power transfer systems for E.V. charging. IEEE Trans. Power Electron. 32(7), 5045-5057 (2017) https://doi.org/10.1109/TPEL.2016.2606893
  21. Zhang, X., Zhang, Y., Zhang, Z., Li, M.: Mode conversion and structure optimization of quadrature coils for electric vehicles wireless power transfer. IEEE Trans. Energy Conver 35(2), 575-590 (2020) https://doi.org/10.1109/tec.2020.2972584
  22. Berger, A., Agostinelli, M., Vesti, S., Oliver, J., Cobos, J.A., Huemer, M.: A wireless charging system applying phase-shift and amplitude control to maximize efficiency and extractable power. IEEE Trans. Power Electron. 30(11), 6338-6348 (2015) https://doi.org/10.1109/TPEL.2015.2410216
  23. Liu, Y., Madawala, U.K., Mai, R., He, Z.: Zero-Phase-angle controlled bidirectional wireless E.V. charging systems for large coil misalignments. IEEE Trans. Power Electron. 35(5), 5343-5353 (2020) https://doi.org/10.1109/tpel.2019.2941709
  24. Chen, S., Liao, C., Wang, L.: "Research on positioning technique of wireless power transfer system for electric vehicles", in 2014 IEEE Conf. and Expo ITEC Asia-Pacific. Beijing, China 2014, 1-4 (2014)
  25. Noda, T., Nagashima, T., Wei, X., Kazimierczuk, M.K., Sekiya, H.: Design procedure for wireless power transfer system with inductive coupling-coil optimizations using PSO. IEEE Int. Symp. Circuits. Syst. (ISCAS) 2016, 646-649 (2016)
  26. Wen, F., Chu, X., Li, Q., Li, R., Liu, L., Jing, F.: Optimization on three-coil long-range and dimension-asymmetric wireless power transfer system. IEEE Trans. Electromagn. Compat. 62(5), 1859-1868 (2020) https://doi.org/10.1109/temc.2020.2976652
  27. Wei, G., Jin, X., Wang, C., Feng, J., Zhu, C., Matveevich, M.I.: An automatic coil design method with modified A.C. resistance evaluation for achieving maximum coil-coil efficiency in WPT systems. IEEE Trans. Power Electron. 35(6), 6114-6126 (2020) https://doi.org/10.1109/tpel.2019.2952120
  28. Mohamed, A.A.S., An, S., Mohammed, O.: Coil design optimization of power pad in IPT system for electric vehicle applications. IEEE Trans. Magn. 54(4), 1-5 (2018) https://doi.org/10.1109/TMAG.2017.2784381
  29. Lee, J.H., Kim, J., Song, J., Kim, D., Kim, Y., Jung, S.: Distance-based intelligent particle swarm optimization for optimal design of permanent magnet synchronous machine. IEEE Trans. Magn. 53(6), 1-4 (2017) https://doi.org/10.1109/TMAG.2017.2658027
  30. Qian, W., Li, M.: Convergence analysis of standard particle swarm optimization algorithm and its improvement. Soft Comput 22, 4047-4070 (2018) https://doi.org/10.1007/s00500-017-2615-6
  31. Davey, K.R.: Latin hypercube sampling and pattern search in magnetic field optimization problems. IEEE Trans. Magn. 44(6), 974-977 (2008) https://doi.org/10.1109/TMAG.2007.916292
  32. Zhang, P., Saeedifard, M., Onar, O.C., Yang, Q., Cai, C.: A field enhancement integration design featuring misalignment tolerance for wireless E.V. charging using LCL topology. IEEE Trans. Power Electron. 36(4), 3852-3867 (2021) https://doi.org/10.1109/TPEL.2020.3021591
  33. Chen, Y., Mai, R., Zhang, Y., Li, M., He, Z.: Improving misalignment tolerance for IPT system using a third-coil. IEEE Trans. Power Electron. 34(4), 3009-3013 (2019) https://doi.org/10.1109/TPEL.2018.2867919