DOI QR코드

DOI QR Code

71% Common-mode voltage suppression modulation strategy for indirect matrix converters

  • Shanhu Li (State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology) ;
  • Zijing Lu (State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology) ;
  • Sunpeng Cao (State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology) ;
  • Xu Liu (State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology) ;
  • Zhaoyang Jin (Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University) ;
  • Weitao Deng (School of Information Science and Engineering, Hunan Institute of Science and Technology)
  • Received : 2022.06.22
  • Accepted : 2022.09.15
  • Published : 2023.02.20

Abstract

Common-mode voltage (CMV) with a high amplitude and frequency is generated when an indirect matrix converter (IMC) is operating, which damages the motor winding insulation and accelerates motor aging. Existing IMC modulation methods can only suppress the CMV by 42.3%. However, this paper proposes a modulation strategy with a 71% reduction in the peak CMV. The proposed method selects active vectors based on the characteristics of the CMV amplitude under each of the active vectors. The rectifier stage selects two active vectors within each modulation sector. According to the sector where the input reference current vector is located, the inverter stage chooses active-voltage vectors whose corresponding peak CMV is 1/3 the minimum peak line voltage for modulation. Moreover, the CMV spikes caused by the dead zone effect are eliminated by reasonably arranging the switching sequence of the voltage vectors in the inverter stage. The proposed approach considerably lowers the peak CMV and has a good suppression effect on the amplitude of high-frequency CMV. Finally, experimental results illustrate the CMV reduction efficiency of the modulation strategy.

Keywords

Acknowledgement

This research was funded by National Natural Science Foundation of China, Grant nos [52207052 51907049], The Central Guidance on Local Science and Technology Development Fund of Hebei Province, Grant no [226Z1805G], Natural Science Foundation of Hebei Province, Grant no [E2020202095].

References

  1. Kim, K.Y., Bak, Y., Lee, K.-B.: Predictive current control for indirect matrix converter with reduced current ripple. J. Power Electron. 20, 443-454 (2020) https://doi.org/10.1007/s43236-020-00048-0
  2. Guo, Y., X. Yan, X.: Research on matrix converter control multiphase PMSM for all electric ship. In: 2011 International Conference on Electrical and Control Engineering, pp. 3120-3123. IEEE (2011).
  3. Shi, B., Zhou, B., Hu, D.: A novel dual-output indirect matrix converter for more electric aircraft. In: IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, pp. 4083-4087. IEEE (2017).
  4. Zhang, J. X., Su, M., Xiong, W. J.: Carrier-based modulation strategy of indirect matrix converters for common-mode voltage reduction. In: 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia), pp. 534-538. IEEE (2017).
  5. Tran, Q., Lee, H.: A three-vector modulation strategy for indirect matrix converter fed open-end load to reduce common-mode voltage with improved output performance. IEEE Trans. Power Electron. 32(10), 7904-7915 (2017) https://doi.org/10.1109/TPEL.2016.2639063
  6. Yerkal, S. A., Aware, M. V., Umre, B. S.: Common mode voltage elimination in a three-to-six phase indirect matrix converter using SVM technique. In: 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), pp. 1-6. IEEE (2020).
  7. Nguyen, H., Lee, H.: An enhanced SVM method to drive matrix converters for zero common-mode voltage. IEEE Trans. Power Electron. 30(4), 1788-1792 (2015)
  8. Kolar, J. W., Schafmeister, F.: Novel modulation schemes minimizing the switching losses of sparse matrix converters. In: IECON'03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468), 3, pp. 2085-2090. IEEE (2003).
  9. Kolar, J.W., Schafmeister, F., Round, S.D.: Novel three-phase AC-AC sparse matrix converters. IEEE Trans. Power Electron. 22(5), 1649-1661 (2007) https://doi.org/10.1109/TPEL.2007.904178
  10. Pena, R. Cardenas, R. Reyes, E.: Control strategy of an indirect matrix converter with modifying DC voltage. In: 2009 13th European Conference on Power Electronics and Applications, pp.1-8. IEEE (2009).
  11. Nguyen, T.D., Lee, H.: Modulation strategies to reduce common-mode voltage for indirect matrix converters. IEEE Trans. Ind. Electron. 59(1), 129-140 (2012) https://doi.org/10.1109/TIE.2011.2141101
  12. Nguyen, T.D., Lee, H.: A new SVM method for an indirect matrix converter with common-mode voltage reduction. IEEE Trans. Ind. Inform. 10(1), 61-72 (2014) https://doi.org/10.1109/TII.2013.2255032
  13. Tsoupos, A., Khadkikar, V.: A novel SVM technique with enhanced output voltage quality for indirect matrix converters. IEEE Trans. Ind. Electron. 66(2), 832-841 (2019) https://doi.org/10.1109/tie.2018.2835404
  14. Padhee, V., Sahoo, A.K., Mohan, N.: Modulation techniques for enhanced reduction in common-mode voltage and output voltage distortion in indirect matrix converters. IEEE Trans. Power Electron. 32(11), 8655-8670 (2017) https://doi.org/10.1109/TPEL.2016.2645944
  15. Su, M., Lin, J., Sun, Y.: A new modulation strategy to reduce common-mode current of indirect matrix converter. IEEE Trans. Ind. Electron. 66(9), 7447-7452 (2019) https://doi.org/10.1109/TIE.2018.2864698
  16. Tran, Q.-H., Nguyen, T.D., Phuong, L.M.: Simplified space-vector modulation strategy for indirect matrix converter with common-mode voltage and harmonic distortion reduction. IEEE Access 8, 218489-218498 (2020) https://doi.org/10.1109/ACCESS.2020.3042528
  17. Li, S.H., Jin, Z.Y., Liu, X.: Open-current vector based SVM strategy of sparse matrix converter for common-mode voltage reduction. IEEE Trans. Ind. Electron. 68(9), 7757-7767 (2021) https://doi.org/10.1109/TIE.2020.3009589
  18. Li, S.H., Wang, W.S., Han, X.: A DPWM modulation strategy to reduce common-mode voltage for indirect matrix converters based on active-current vector magnitude characteristics. IEEE Trans. Ind. Electron. 69(8), 8102-8112 (2022) https://doi.org/10.1109/TIE.2021.3109503
  19. Nguyen, H.-N., Lee, H.-H.: A modulation scheme for matrix converters with perfect zero common-mode voltage. IEEE Trans. Power Electron. 31(8), 5411-5422 (2016) https://doi.org/10.1109/TPEL.2015.2493339
  20. Deng, W.T., Li, H.S., Rong, J.: A novel direct torque control of matrix converter-fed PMSM drives using dynamic sector boundary for common-mode voltage minimization. IEEE Trans. Ind. Electron. 68(1), 70-80 (2021) https://doi.org/10.1109/TIE.2019.2962408
  21. Mir, T.N., Singh, B., Bhat, A.H.: Delta-sigma modulation based common-mode voltage elimination in direct matrix converter. IEEE Trans. Ind. Inform. 17(2), 1048-1057 (2021) https://doi.org/10.1109/tii.2020.2987918
  22. Cacciato, M., Consoli, A., Scarcella, G.: Reduction of commonmode currents in PWM inverter motor drives. IEEE Trans. Ind. Appl. 35(2), 469-476 (1999) https://doi.org/10.1109/28.753643
  23. Hava, A.M., un, E.: Performance analysis of reduced commonmode voltage PWM methods and comparison with standard PWM methods for three-phase voltage-source inverters. IEEE Trans. Power Electron. 24(1), 241-252 (2009) https://doi.org/10.1109/TPEL.2008.2005719
  24. Lai, Y.-S., Shyu, F.-S.: Optimal common- mode voltage reduction PWM technique for inverter control with consideration of the dead-time effects-part I: Basic development. IEEE Trans. Ind. Appl. 40(6), 1605-1612 (2004) https://doi.org/10.1109/TIA.2004.836149
  25. Hou, C., Shih, C., Cheng, P.: Common-mode voltage reduction pulse width modulation techniques for three-phase grid-connected converters. IEEE Trans. Power Electron. 28(4), 1971-1979 (2013) https://doi.org/10.1109/TPEL.2012.2196712
  26. Tian, H., Li, Y., Li, Y.W.: Commutation scheme of seven-level hybrid-clamped converters with suppressed deadband-induced voltage spikes. IEEE Trans. Ind. Electron. 68(12), 11663-11672 (2021) https://doi.org/10.1109/TIE.2020.3048284
  27. Huang, J., Li, K.: Eliminating common-mode voltage spikes caused by dead-time effect in three-phase inverters through symmetrical rotation reverse carriers. IEEE Trans. Power Electron. 36(5), 6056-6067 (2021) https://doi.org/10.1109/TPEL.2020.3027712
  28. Cacciato, M., Consoli, A., Scarcella, G.: A novel space-vector modulation technique for common node emissions reduction. In: 2007 International Aegean Conference on Electrical Machines and Power Electronics, pp. 199-204. IEEE (2007).
  29. Janabi, A., Wang, B.: Hybrid SVPWM scheme to minimize the common-mode voltage frequency and amplitude in voltage source inverter drives. IEEE Trans. Power Electron. 34(2), 1595-1610 (2019) https://doi.org/10.1109/tpel.2018.2834409